MATS304 Matematik Sınıflarında İletişim

4 AKTS - 2-0 Süre (T+U)- 6. Yarıyıl- 2 Yerel Kredi

Genel Bilgi

Kod MATS304
Ad Matematik Sınıflarında İletişim
Dönem 2024-2025 Eğitim-Öğretim Yılı
Yarıyıl 6. Yarıyıl
Süre (T+U) 2-0 (T-U) (17 Hafta)
AKTS 4 AKTS
Yerel Kredi 2 Yerel Kredi
Eğitim Dil Türkçe
Seviye Lisans Dersi
Tür Normal
Öğretim Şekli Yüz Yüze Öğretim
Bilgi Paketi Koordinatörü Doç. Dr. Gülfem SARPKAYA AKTAŞ
Dersin Öğretim Elemanı
Güncel dönem ders programı henüz yapılmamıştır.


Dersin Amacı / Hedefi

Öğrencilerin matematiğin kendine özgü sembollerini ve terminolojisini fark etmelerini sağlamak. Matematiğin sembol ve terminolojisini etkili ve doğru kullanmalarını, matematik dilini matematiğin kendi içinde ve farklı disiplinlerde uygun ve etkili şekilde kullanabilmeyi sağlamak. Matematiksel düşünceleri somut model, şekil, resim, grafik, tablo, sembol vb. farklı temsiller kullanarak ve sözlü, yazılı olarak ifade edebilmelerini sağlamak. Günlük dili matematiksel dil ve sembollerle ilişkilendirebilmek.

Dersin İçeriği

Matematiksel sembolve terminoloji, matematiksel dilin kendi içinde ve farklı disiplinler ile ilişkisi, matematiksel düşüncelerin farklı temsiller ile sözlü ve yazılı ifadesi, günlük dil ile matematiksel dil ve semboller arasındaki ilişki

Dersin Ön Koşulu

Mevcut değil

Kaynaklar

Kabael, T., & Baran, A. A. (2019). Ortaokul matematik öğretmeni adaylarının matematik okuryazarlığı performanslarının ve matematik okuryazarlığına ilişkin görüşlerinin incelenmesi. Eskişehir Osmangazi Üniversitesi Türk Dünyası Uygulama ve Araştırma Merkezi Eğitim Dergisi, 4(2), 51-67. KABAEL, T. (2019). Matematik okuryazarlığı ve PISA. Kabael, T. (Ed.), Matematik Okuryazarlığı ve PISA (s. 11-43). Ankara: Anı Yayıncılık. Cobb, P., Yackel, E., & McClain, K. (Eds.). (2012). Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design. Routledge.

Notlar

Cobb, P., Gravemeijer, K., Yackel, E., McClain, K., & Whitenack, J. (2021). Mathematizing and symbolizing: The emergence of chains of signification in one first-grade classroom. In Situated cognition (pp. 151-233). Routledge. Baykul, Y. (1997). lkögretimde matematik ögretimi. Ankara: Elit Yayıncılık. Çalıkoglu Bali, G. (2002). Matematik ögretiminde dil ögretimi. Hacettepe Üniversitesi Egitim Fakültesi Dergisi, 23, 57-61. Dickson, L., Brown, B. ve Gibson, O. (1993). Children learning mathematics: A teacher s guide to recent research. London: Cassell


Dersin Öğrenme Çıktıları

Sıra Dersin Öğrenme Çıktıları
ÖÇ01 Matematiksel sembol ve terminolojiyi etkili ve doğru bir şekilde kullanır
ÖÇ02 Matematik öğretimine özgü gösterim şekillerini bilir ve etkili bir şekilde kullanır.
ÖÇ03 Matematik dilini kendi içinde ve farklı disiplinlerde uygun ve etkili kullanmayı bilir.
ÖÇ04 Günlük dili matematiksel dil ve semboller ile ifade edebilmeyi bilir
ÖÇ05 Matematiksel dili günlük dil ve semboller ile ifade edebilmeyi bilir.


Program Öğrenme Çıktıları ile İlişkisi

Sıra Tür Program Öğrenme Çıktıları Duzey
PÖÇ01 Bilgi - Kuramsal, Olgusal Matematiğe ilişkin yeterli alan bilgisine sahip olur.
PÖÇ02 Bilgi - Kuramsal, Olgusal Öğretmenlik mesleği ve alanıyla ilgili pedagojik bilgiye sahip olur.
PÖÇ03 Bilgi - Kuramsal, Olgusal Eğitim ortamlarında kullanılacak sınıf yönetimi yaklaşımlarını etkin olarak uygular. 4
PÖÇ04 Bilgi - Kuramsal, Olgusal Etkili bir matematik eğitimi için uygun öğretim yöntemlerinin kullanıldığı öğrenme ortamlarını gelişim ve yaş düzeylerine uygun olarak hazırlar. 4
PÖÇ05 Bilgi - Kuramsal, Olgusal Matematik-Toplum-Çevre-Tarih ilişkisini bilir ve mesleki ve günlük yaşamında kullanır. 5
PÖÇ06 Bilgi - Kuramsal, Olgusal Türkçeyi kurallarına uygun düzgün ve etkili kullanır. 5
PÖÇ07 Bilgi - Kuramsal, Olgusal Matematik öğretiminde konuya uygun araç, gereç ve materyal seçer ve tasarlar.
PÖÇ08 Bilgi - Kuramsal, Olgusal Farklı ölçme ve değerlendirme yöntem ve teknikleri kullanarak öğrencilerin gelişimini izler.
PÖÇ09 Bilgi - Kuramsal, Olgusal Alanı ile ilgili problemlerin çözümünde bireysel ve ekip üyesi olarak sorumluluk alır. 3
PÖÇ10 Beceriler - Bilişsel, Uygulamalı Yaşam boyu öğrenme bilincine sahip olur.
PÖÇ11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Alanındaki bilgi ve becerilerini, tespit ettiği sorunları ve çözüm önerilerini sözlü ve yazılı iletişim yoluyla uzman ve uzman olmayan kişiler ile paylaşır. 5
PÖÇ12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Etkili bir matematik öğretimi için bilgi ve iletişim teknolojilerini kullanır. 5
PÖÇ13 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Alanı ile ilgili yabancı kaynakları takip edebilecek kadar yabancı dil bilgisine sahip olur.
PÖÇ14 Yetkinlikler - Öğrenme Yetkinliği Türk eğitim sisteminin amaç, yapı ve işleyişi bilgisine sahiptir.
PÖÇ15 Yetkinlikler - Öğrenme Yetkinliği Atatürk İlke ve İnkılâplarına bağlı bir öğretmen olur.


Haftalık Akış

Hafta Konu Ön Hazırlık Yöntemler
1 Ders içeriğinin paylaşılması ve beklentilerin açıklanması İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
2 Matematik terminolojisinin yapısı ve özellikleri İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
3 Matematik sınıflarında iletişimin önemi İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
4 Öğretim Programında matematik dili kullanımının yeri İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
5 Matematik öğretiminde matematik dilini etkili kullanma İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Tartışma, Alıştırma ve Uygulama
6 Matematik dilini farklı disiplinlerde uygun ve etkili şekilde kullanabilme İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Tartışma, Soru-Cevap
7 Matematiksel yazmanın genel ilkeleri ve hatalı durumların incelenmesi İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Soru-Cevap, Alıştırma ve Uygulama, Tartışma
8 Ara Sınav Sınava Hazırlık Ölçme Yöntemleri:
Yazılı Sınav
9 Matematiksel düşünceleri ifade ederken somut model, şekil, resim, grafik, tablo, sembol vb. farklı temsil biçimlerini kullanma İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
10 Günlük dili, matematiksel dil ve sembollerle, matematiksel dili, günlük dil ve sembollerle ilişkilendirme İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
11 Matematiksel düşünceleri etkili bir şekilde sözlü olarak ifade etme İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Alıştırma ve Uygulama, Tartışma, Soru-Cevap
12 Matematiksel düşünceleri etkili bir şekilde yazılı olarak ifade etme İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
13 Matematik eğitiminde yazmanın önemi İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Soru-Cevap
14 Matematik eğitiminde yararlanılan yazma aktivitelerinin türleri ve özellikleri İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
15 Genel tekrar ve dönem değerlendirmesi İlgili kaynakların incelenmesi Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
16 Yarıyıl Sonu Sınavları Sınava Hazırlık Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
17 Performans Değerlendirme Sınava Hazırlık Ölçme Yöntemleri:
Performans Değerlendirmesi


Öğrenci İş Yükü - AKTS

Çalışmalar Sayısı Süresi (Saat) İş Yükü (Saat)
Ders ile İlgili Çalışmalar
Ders (Sınav haftaları dahil değildir) 14 2 28
Sınıf Dışı Ders Çalışma (Ön çalışma, pekiştirme) 14 2 28
Değerlendirmeler ile İlgili Çalışmalar
Ödev, Proje, Diğer 1 0 0
Ara Sınavlar (Yazılı, Sözlü, vs.) 1 8 8
Yarıyıl/Yıl Sonu/Final Sınavı 1 24 24
Toplam İş Yükü (Saat) 88
Toplam İş Yükü / 25 (s) 3,52
AKTS 4 AKTS

Güncelleme Zamanı: 13.05.2024 10:16