MATZ114 Calculus II

7 ECTS - 4-0 Duration (T+A)- 2. Semester- 4 National Credit

Information

Code MATZ114
Name Calculus II
Term 2024-2025 Academic Year
Semester 2. Semester
Duration (T+A) 4-0 (T-A) (17 Week)
ECTS 7 ECTS
National Credit 4 National Credit
Teaching Language Türkçe
Level Lisans Dersi
Type Normal
Label FE Field Education Courses C Compulsory
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. PERİHAN ARTUT
Course Instructor
1


Course Goal / Objective

The main purpose of this course is to provide students to learn mathematical thiking methods , develop application of derivation and integral concept.

Course Content

In this course, derivative applications and the concept of integral will be discussed. Within the scope of derivative applications, finding the extremum values of a function, mean value theorem, determination of increasing and decreasing functions, first and second derivative tests, graphing and optimization applications will be examined. Integral topics include integration techniques and applications, definite integral, arc length, area under the curve and volume calculations. This content aims to develop students' mathematical skills in topics such as function analysis and area-volume calculations.

Course Precondition

none

Resources

Genel Matematik, Ekrem Kadıoğlu, Muhammet Kamali, Genel Matematik, Mustafa Balcı, Analize Giriş, Fikri Akdeniz, Yusuf Ünlü, Doğan Dönmez V.A. Zorich, Mathematical Analysis I, Springer-Verlag Berlin Heidelberg, 2004. V.A. Zorich, Mathematical Analysis II, Springer-Verlag Berlin Heidelberg, 2004. J. Stewart, Calculus, 2012. G.B. Thomas, M.D. Weir, J.R. Hass, Calculus, 2016.

Notes

https://library.cu.edu.tr/cu/e-kaynaklar/veritabanlari


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explains the concept of derivative.
LO02 Explains theorems of derivatives.
LO03 Applies the rules of derivation.
LO04 Draws graphs of functions.
LO05 Explains the concept of integral.
LO06 Explains the methods of integration.
LO07 Solves problems related to integral applications
LO08 Explains the definite integral concept.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Has enough knowledge about mathematics. 5
PLO02 Bilgi - Kuramsal, Olgusal Has pedagogical knowledge about teaching profession and field. 2
PLO03 Bilgi - Kuramsal, Olgusal Implements classroom management approaches to be used in educational environments effectively.
PLO04 Bilgi - Kuramsal, Olgusal Prepares the learning environments in which appropriate teaching methods are used for effective mathematics education in accordance with development and age levels.
PLO05 Bilgi - Kuramsal, Olgusal Knows the relationship between Mathematics-Society-Environment-History and uses it in professional and daily life. 3
PLO06 Bilgi - Kuramsal, Olgusal Uses Turkish properly and effectively according to the rules.
PLO07 Bilgi - Kuramsal, Olgusal Selects and designs appropriate materials, in mathematics teaching.
PLO08 Bilgi - Kuramsal, Olgusal Monitors students' progress using different assessment and evaluation methods and techniques.
PLO09 Bilgi - Kuramsal, Olgusal Takes responsibility as an individual and as a team member to solve problems related to the field. 2
PLO10 Beceriler - Bilişsel, Uygulamalı Has life-long learning awareness.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Shares his/her knowledge and skills, problems and solutions that he/she identified by means of oral and written communication with the expert and non-expert people.
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Uses information and communication technologies and other related materials for an effective mathematics teaching.
PLO13 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Has enough foreign language knowledge to follow foreign resources related to the field.
PLO14 Yetkinlikler - Öğrenme Yetkinliği Has the knowledge of the purpose, structure and functioning of the Turkish education system.
PLO15 Yetkinlikler - Öğrenme Yetkinliği Becomes a teacher who adheres to Atatürk's principles and revolutions.


Week Plan

Week Topic Preparation Methods
1 Some theorems about differentiable functions Kadıoğlu ve Kamali (2005) de ilgili bölüm Akdeniz , Ünlü ve Dönmez (2007) de ilgili bölüm
2 Monotonic function and Minimum and Maximum Values, Critical Points Kadıoğlu ve Kamali (2005) de ilgili bölüm Akdeniz , Ünlü ve Dönmez (2007) de ilgili bölüm
3 L Hospital s Rule and Indeterminate Forms Kadıoğlu ve Kamali (2005) de ilgili bölüm Akdeniz , Ünlü ve Dönmez (2007) de ilgili bölüm Balcı (2000) da ilgili bölüm
4 Graph of functions Kadıoğlu ve Kamali (2005) de ilgili bölüm Akdeniz , Ünlü ve Dönmez (2007) de ilgili bölüm
5 Some aplications about derivation Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
6 Properties of the Indefinite Integraltemel integrasyon formülleri Indefinite Integrals and Computing Indefinite Integrals, integrations formulas Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
7 Substitution Rule for Indefinite Integrals Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
8 Mid-Term Exam preparing exam
9 Integrating Rational Functions by Partial Fractions Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
10 Integrals Involving Trigonometric Functions Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
11 Riemann sum, definite integrals Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
12 Fundemantal İntegrals Theorems Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
13 Practices about Fundemantal İntegrals Theorems Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
14 İntegration method and definite integrals Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
15 arc length, area Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm
16 Term Exams preparing exam
17 Term Exams preparing exam


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 15 5 75
Assesment Related Works
Homeworks, Projects, Others 1 5 5
Mid-term Exams (Written, Oral, etc.) 1 16 16
Final Exam 1 24 24
Total Workload (Hour) 176
Total Workload / 25 (h) 7,04
ECTS 7 ECTS

Update Time: 12.12.2024 05:57