TS019 Optimization I

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Code TS019
Name Optimization I
Term 2024-2025 Academic Year
Term Fall
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Doktora Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator
Course Instructor Prof. Dr. MAHMUT ÇETİN (A Group) (Ins. in Charge)


Course Goal / Objective

The aims of the course are to formulate engineering problems by using systems approach, to interpret mathematical solutions, to chose optimal solution, and find practical solutions faced in real life and/or engineering field.

Course Content

Introduction; system concept; linear programming; geometric solution of linear programming, non-negative slack variables; Simplex algorithm of Dantzig, duality, sensitivity analysis; transportation problems

Course Precondition

In order to enroll this course, it is sufficient to be a graduate or doctoral student. There are no other prerequisites.

Resources

1. H. A. Eiselt, C. L. Sandblom, 2007. Linear Programming and its Applications. Springer 2. Bernard Kolman, Robert E. Beck, 1995. Elementary Linear Programming with Applications. Academic Press, ISBN# 012417910X, 9780124179103. 3. Tulunay, Y., 1991. Matematik Programlama ve İşletme Uygulamaları. S. 743, Bayrak Matbaacılık, İstanbul. 4. Optimization, Ankara University Open Course Portal (https://acikders.ankara.edu.tr/course/view.php?id=4261)

Notes

Selected articles from national and international journals. https://acikders.ankara.edu.tr/course/view.php?id=4261


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Learns system concept.
LO02 Helps students increase their ability to formulate mathematically simple or plain sentences.
LO03 Learns optimization concept and problem solving.
LO04 Interprets linear programming problem solutions by obtaining the optimal solution from an infinite number of solutions.
LO05 Contributes to the rational use of natural resources from linear programming problem solutions.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Has the ability to develop and deepen the level of expertise degree qualifications based on the knowledge acquired in the field of agriculture and irrigation structures
PLO02 Bilgi - Kuramsal, Olgusal Has the ability to understand the interaction between irrigation and agricultural structures and related disciplines
PLO03 Bilgi - Kuramsal, Olgusal Qualified in devising projects in agricultural structures and irrigation systems. 4
PLO04 Bilgi - Kuramsal, Olgusal Conducts land applications,supervises them and assures of development
PLO05 Bilgi - Kuramsal, Olgusal Has the ability to support his specilist knowledge with qualitative and quantitative data. Can work in different disciplines. 3
PLO06 Bilgi - Kuramsal, Olgusal Solves problems by establishing cause and effect relationship 5
PLO07 Bilgi - Kuramsal, Olgusal Has the ability to apply theoretical and practical knowledge in the field of agricultural structures and irrigation department 4
PLO08 Bilgi - Kuramsal, Olgusal Able to carry out a study independently on a subject.
PLO09 Bilgi - Kuramsal, Olgusal Has the ability to design and apply analytical, modelling and experimental researches, to analyze and interpret complex issues occuring in these processes. 5
PLO10 Beceriler - Bilişsel, Uygulamalı Can access resources on his speciality, makes good use of them and updates his knowledge constantly.
PLO11 Yetkinlikler - Öğrenme Yetkinliği Has the ability to use computer software in agricultural structures and irrigation; can use informatics and communications technology at an advanced level. 4


Week Plan

Week Topic Preparation Methods
1 Introduction to Linear Programming and System Concept Textbooks, articles and Internet resources Öğretim Yöntemleri:
Anlatım, Tartışma
2 Basit Doğrusal Programlama Problemleri Textbooks, articles, Internet resources, supplemental documents Öğretim Yöntemleri:
Anlatım, Tartışma
3 Matrices, Linear Algebra and Linear Programming Textbooks, articles and Internet resources Öğretim Yöntemleri:
Anlatım, Tartışma, Beyin Fırtınası
4 Solution with Graph Method, Basic Concepts: Convex Sets Textbooks, articles and Internet resources Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
5 Convex and Concave functions, Endpoints Textbooks, articles, Internet resources, supplemental documents Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
6 Simplex Method, Table Form Textbooks, articles, Internet resources, supplemental documents Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama
7 Degeneration, Convergence of Simplex Method Textbooks, articles and Internet resources Öğretim Yöntemleri:
Anlatım, Tartışma
8 Mid-Term Exam Textbooks, articles, Internet resources, supplemental documents Ölçme Yöntemleri:
Yazılı Sınav
9 Artificial Variables, 2-Phase Simplex Algorithm, Big M Method Textbooks, articles and Internet resources Öğretim Yöntemleri:
Anlatım, Soru-Cevap
10 Some Outliers; Limitless, endless solutions Textbooks, articles and Internet resources Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama
11 Reorganized Simplex Method Textbooks, articles, Internet resources, supplemental documents Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
12 Duality Theory Textbooks, articles, Internet resources, supplemental documents Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
13 Dual Simplex Algorithm Textbooks, articles and Internet resources Öğretim Yöntemleri:
Anlatım, Tartışma, Örnek Olay
14 Computer Solution of Linear Programming Models Textbooks, articles and Internet resources Öğretim Yöntemleri:
Anlatım, Tartışma
15 Computer Solution of Linear Programming Models: An application to agriculture and water resources Textbooks, articles, Internet resources, supplemental documents Öğretim Yöntemleri:
Alıştırma ve Uygulama, Benzetim
16 Term Exams Textbooks, articles, Internet resources, supplemental documents Ölçme Yöntemleri:
Yazılı Sınav, Proje / Tasarım
17 Term Exams Textbooks, articles, Internet resources, supplemental documents Ölçme Yöntemleri:
Yazılı Sınav, Proje / Tasarım


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 5 70
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 30 30
Total Workload (Hour) 157
Total Workload / 25 (h) 6,28
ECTS 6 ECTS

Update Time: 13.05.2024 02:32