SD0675 Introduction to Machine Learning

3 ECTS - 2-0 Duration (T+A)- 0. Semester- 2 National Credit

Information

Code SD0675
Name Introduction to Machine Learning
Term 2024-2025 Academic Year
Term Fall
Duration (T+A) 2-0 (T-A) (17 Week)
ECTS 3 ECTS
National Credit 2 National Credit
Teaching Language Türkçe
Level Üniversite Dersi
Label NFE Non-Field Elective Courses (University) UCC University Common Course
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Öğr. Gör.Dr. YILMAZ KOÇAK
Course Instructor Öğr. Gör.Dr. YILMAZ KOÇAK (A Group) (Ins. in Charge)


Course Goal / Objective

To provide basic knowledge about statistics and machine learning concepts and methods, to understand the general structure of machine learning algorithms, and to gain the ability to code machine learning algorithms with a chosen programming language (Python etc.).

Course Content

Basic statistics, definition and general structure of algorithm of machine learning, coding of machine learning algorithms with the selected programming language, regression and classification algorithms, Support Vector Machines.

Course Precondition

Resources

Uğuz S., Makine Öğrenmesi Teorik Yönleri ve Pyhton Uygulaması, Nobel Yayınları 2. Basım, 2021

Notes

Smola, A. and Vishwanathan, S.V.N. Introduction to Machine Learning, Yahoo Labs, Santa Clara


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explains basic concept of statistics.
LO02 Explains the concept and algorithms of Machine Learning
LO03 Codes the Data Preprocessing Process
LO04 Explains regression concepts and defines performance metrics for regression,
LO05 Writes programs to solve simple and multiple linear regression problems.
LO06 Explains the K-Nearest Neighbor (KNN) algorithm
LO07 Defines classification and performance metrics for classification.
LO08 Explains the concepts of Support Vector Machines


Week Plan

Week Topic Preparation Methods
1 The importance of using Python in statistics and machine learning Examining Python Programming Language from source books and search engines
2 Examining Python Libraries from source books and search engines. Examining Python Libraries from source books and search engines.
3 Examining Data Visualization with Python. Examining Data Visualization with Python.
4 Vectors and Matrices Researching of Vectors and Matrices.
5 Basic Concepts in Machine Learning Reading the subject from reference books
6 Application Development Processes in Machine Learning Reading the subject from reference books
7 Data Preprocessing Exploring the concept of Data Preprocessing
8 Mid-Term Exam Exam preparation
9 Simple Linear Regression Researching the concept of regression
10 Multiple Linear Regression Researching of regression types
11 Performance Benchmarks for Regression Researching performance evaluation
12 Bayes Theorem and Classification Researching the concept of classification
13 Investigation of classification criteria Investigation of classification criteria
14 K-Nearest Neighbor Algorithm Investigating the concept of neighborhood
15 Support Vector Machines Researching the subject.
16 Term Exams Exam preparation
17 Term Exams Exam preparation


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 2 28
Out of Class Study (Preliminary Work, Practice) 14 2 28
Assesment Related Works
Homeworks, Projects, Others 1 10 10
Mid-term Exams (Written, Oral, etc.) 1 6 6
Final Exam 1 10 10
Total Workload (Hour) 82
Total Workload / 25 (h) 3,28
ECTS 3 ECTS

Update Time: 03.09.2024 04:56