IEM751 Machine Learning

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
ECONOMETRICS (MASTER) (WITH THESIS)
Code IEM751
Name Machine Learning
Term 2025-2026 Academic Year
Term Fall and Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Dr. Öğr. Üyesi Salih ÇAM
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

It aims to visualize, analyze and interpret structured or semi-structured data.

Course Content

The course includes data visualization, linear regression models, models with limited dependent variables, artificial neural network algorithms, Support Vector Machine (SVM), Nearest K-Neighbor algorithm and decision trees.

Course Precondition

No prerequisites are required.

Resources

KOÇ, D. T. (Ed.). (2022). Ekonomide Veri Bilimi, Makine Öğrenmesi, Derin Öğrenme ve Uygulamaları. Akademisyen Kitabevi. Özdemir, M. (2020). R ile programlama ve makine öğrenmesi. Nobel Akademik Yayıncılık.

Notes

Lecture notes


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Knows basic data structures.
LO02 Visualizes the data using an appropriate method
LO03 Determines the appropriate model to predict variables.
LO04 Estimates the corresponding model with econometrics software.
LO05 Identifies and corrects possible problems in the analysis.
LO06 interprets the outcomes obtained by a machine learning algorithm.
LO07 Makes inferences on the basis of model output.
LO08 Makes prediction based on the utilized model.
LO09 Evaluates the forecasting process and improves the model.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explains contemporary concepts about Econometrics, Statistics, and Operation Research
PLO02 Bilgi - Kuramsal, Olgusal Explains relationships between acquired knowledge about Econometrics, Statistics, and Operation Research 4
PLO03 Bilgi - Kuramsal, Olgusal Explains how to apply acquired knowledge in the field to Economics, Business, and other social sciences 5
PLO04 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems 4
PLO05 Beceriler - Bilişsel, Uygulamalı Models problems with Mathematics, Statistics, and Econometrics 5
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 5
PLO07 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research 3
PLO08 Beceriler - Bilişsel, Uygulamalı Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution
PLO09 Beceriler - Bilişsel, Uygulamalı Searches for new approaches and methods to solve problems being faced
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently 5
PLO11 Beceriler - Bilişsel, Uygulamalı Collects/analyzes data in a purposeful way 5
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Converts its findings into a master's thesis or a professional report in Turkish or a foreign language 4
PLO13 Beceriler - Bilişsel, Uygulamalı Develops solutions for organizations using Econometrics, Statistics, and Operation Research 4
PLO14 Beceriler - Bilişsel, Uygulamalı Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research 3
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs an individual work to solve a problem with Econometrics, Statistics, and Operation Research
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads by taking responsibility individually and/or within the team
PLO17 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form
PLO19 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values


Week Plan

Week Topic Preparation Methods
1 Introduction of big data and data structures Reading about the topic Öğretim Yöntemleri:
Soru-Cevap, Anlatım
2 Introduction to machine learning and basic algorithms used in machine learning Reading about the topic Öğretim Yöntemleri:
Tartışma, Soru-Cevap, Anlatım
3 Supervised learning Reading about the topic Öğretim Yöntemleri:
Anlatım, Tartışma
4 Unsupervised learning Reading about the topic Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama
5 Reinforcement Learning Reading about the topic Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
6 Linear regression models and its assumptions. Reading about the topic and data preparation. Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama
7 Deviations from the assumptions of the linear regression model Reading about the topic Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Örnek Olay
8 Mid-Term Exam Exam preparation Ölçme Yöntemleri:
Yazılı Sınav
9 Models with restricted dependent variables Reading about the topic Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Örnek Olay
10 Support Vector Machines (SVM) Reading about the topic Öğretim Yöntemleri:
Anlatım, Örnek Olay, Alıştırma ve Uygulama
11 K nearest neighbor model Reading about the topic Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
12 Principal component analysis Preparing an appropriate data set Öğretim Yöntemleri:
Soru-Cevap, Tartışma, Alıştırma ve Uygulama
13 Introduction to artificial neural network algorithms, the basic applications of artificial neural network algorithm and main function types Preparing an appropriate data set to forecast Öğretim Yöntemleri:
Alıştırma ve Uygulama, Anlatım
14 Estimation and interpretation of artificial neural network algorithm with supervised learning Estimating the model Öğretim Yöntemleri:
Bireysel Çalışma, Proje Temelli Öğrenme
15 estimation and interpretation of artificial neural networks with unsupervised learning Estimating the model Öğretim Yöntemleri:
Bireysel Çalışma, Proje Temelli Öğrenme
16 Term Exams Exam preparation Ölçme Yöntemleri:
Yazılı Sınav, Proje / Tasarım, Performans Değerlendirmesi
17 Term Exams Exam preparation Ölçme Yöntemleri:
Yazılı Sınav, Proje / Tasarım, Performans Değerlendirmesi


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 6 84
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 3 5 15
Mid-term Exams (Written, Oral, etc.) 1 5 5
Final Exam 1 4 4
Total Workload (Hour) 150
Total Workload / 25 (h) 6,00
ECTS 6 ECTS

Update Time: 30.04.2025 01:08