BBZ307 Introduction to Machine Learning

5 ECTS - 3-1 Duration (T+A)- 5. Semester- 3.5 National Credit

Information

Unit FACULTY OF SCIENCE AND LETTERS
COMPUTER SCIENCES PR.
Code BBZ307
Name Introduction to Machine Learning
Term 2025-2026 Academic Year
Semester 5. Semester
Duration (T+A) 3-1 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 3.5 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Label VK Vocational Knowledge Courses C Compulsory
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. GÜZİN YÜKSEL
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to understand machine learning algorithms, examine their working principles mathematically, and apply these algorithms to data sets with a programming language.

Course Content

In this course, Machine Learning and Concepts, Supervised Learning Algorithms, Unsupervised Learning Algorithms topics will be covered.

Course Precondition

It is not available.

Resources

N. Gürsakal, Makine Öğrenmesi, Dora Yayın, 2018. ME. Balaban, E. Kartal, Veri Madenciliği ve Makine Öğrenmesi, Çağlayan Yayıncılık, 2018.

Notes

Ders Notları M. Kubat, Introduction to Machine Learning, Springer, 2017. Ethem Alpaydın,Introduction to Machine Learning, MIT Press.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explains basic statistical concepts.
LO02 Recognize the concept of Machine Learning and its algorithms.
LO03 Applies methods and techniques for data preprocessing.
LO04 It uses regression and performance measures for regression.
LO05 Applies analysis methods and techniques for simple and multiple linear regression problems.
LO06 It uses performance metrics for classification.
LO07 Recognize the features of the K-Nearest Neighbor Algorithm.
LO08 Explains the Binary Logistic Regression method.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Gain comprehensive knowledge of fundamental concepts, algorithms, and data structures in Computer Science. 4
PLO02 Bilgi - Kuramsal, Olgusal Learn essential computer topics such as software development, programming languages, and database management 3
PLO03 Bilgi - Kuramsal, Olgusal Understand advanced computer fields like data science, artificial intelligence, and machine learning. 4
PLO04 Bilgi - Kuramsal, Olgusal Acquire knowledge of topics like computer networks, cybersecurity, and database design.
PLO05 Beceriler - Bilişsel, Uygulamalı Develop skills in designing, implementing, and analyzing algorithms 4
PLO06 Beceriler - Bilişsel, Uygulamalı Gain proficiency in using various programming languages effectively
PLO07 Beceriler - Bilişsel, Uygulamalı Learn skills in data analysis, database management, and processing large datasets. 3
PLO08 Beceriler - Bilişsel, Uygulamalı Acquire practical experience through working on software development projects. 2
PLO09 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Strengthen teamwork and communication skills.
PLO10 Yetkinlikler - Alana Özgü Yetkinlik Foster a mindset open to technological innovations. 2
PLO11 Yetkinlikler - Öğrenme Yetkinliği Encourage the capacity for continuous learning and self-improvement.
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Enhance the ability to solve complex problems 2


Week Plan

Week Topic Preparation Methods
1 Introduction to Machine Learning, basic definitions and concepts. Reading sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
2 Types of Machine Learning and Performance Evaluation Reading sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma
3 Pre-Processing for Data: Preprocessing Reading sources Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
4 Supervised Learning 1 - Machine Learning Based on Multiple Linear Regression, Ridge Regression and LASSO Reading sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma
5 Supervised Learning 2 - k-Nearest Neighborhood Reading sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
6 Supervised Learning 3- Support Vector Machines Reading sources Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
7 Supervised Learning 4 - Simple Bayes Classifier Reading sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
8 Mid-Term Exam Reading lecture notes and resources. Ölçme Yöntemleri:
Yazılı Sınav
9 Supervised Learning 5- Binary Logistic Regression Reading sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma
10 Unsupervised Learning 1- Principal Components Analysis Reading sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Soru-Cevap
11 Unsupervised Learning 2 - K-Means Reading sources Öğretim Yöntemleri:
Soru-Cevap, Anlatım, Gösterip Yaptırma
12 Ensemble Learning- Random Forest Reading sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Gösterip Yaptırma
13 En İyi Modelin Seçimi - K-katlı çapraz doğrulama ve Hiper Parametre Seçimi Reading sources Öğretim Yöntemleri:
Soru-Cevap, Anlatım, Alıştırma ve Uygulama
14 Homework Presentations I Completing the presentation Öğretim Yöntemleri:
Proje Temelli Öğrenme
15 Homework Presentations II Completing the presentation Öğretim Yöntemleri:
Proje Temelli Öğrenme
16 Term Exams Reading lecture notes and resources. Ölçme Yöntemleri:
Proje / Tasarım, Yazılı Sınav
17 Term Exams Reading lecture notes and resources. Ölçme Yöntemleri:
Proje / Tasarım, Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 4 56
Assesment Related Works
Homeworks, Projects, Others 1 3 3
Mid-term Exams (Written, Oral, etc.) 1 3 3
Final Exam 1 4 4
Total Workload (Hour) 122
Total Workload / 25 (h) 4,88
ECTS 5 ECTS

Update Time: 07.05.2025 02:39