UA604 Spatial Statistical Modeling Methods-II

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF NATURAL AND APPLIED SCIENCES
REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (PhD)
Code UA604
Name Spatial Statistical Modeling Methods-II
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. NİYAZİ ARSLAN
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

To demonstrate the application of statistical techniques to the estimate of environmental parameters.

Course Content

Thermal satellites, Hotspot analysis, Anselin Local Moran I statistical method, Thermal image analysis, Application of statistical methods to thermal images, Monitoring of thermal changes in industrial facilities

Course Precondition

There is no pre requires

Resources

- Arslan, N. (2018). Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors. Environ Monit Assess 190, 637. https://doi.org/10.1007/s10661-018-7017-4 - Arslan, N., Majidi Nezhad, M., Heydari, A., Astiaso Garcia, D., & Sylaios, G. (2023). A Principal Component Analysis Methodology of Oil Spill Detection and Monitoring Using Satellite Remote Sensing Sensors. Remote Sensing, 15(5), 1460. https://doi.org/10.3390/rs15051460 - Arslan, N. (2018). Identification of hotspots using different statistical methods in a region of manufacturing plants. Environ Monit Assess 190, 550. https://doi.org/10.1007/s10661-018-6939-1 - Sekertekin, A, Arslan, N., (2019). Monitoring thermal anomaly and radiative heat flux using thermal infrared satellite imagery – A case study at Tuzla geothermal region, Geothermics,78(243-254), https://doi.org/10.1016/j.geothermics.2018.12.014. - Claudia Kuenzer, Stefan Dech (eds), (2013). Thermal Infrared Remote Sensing Sensors, Methods, Applications, ISBN:978-94-007-6639-6, Springer - Ying Li (2023). Oil Spill Detection, Identification, and Tracing. 1st Edition, ISBN-13: 978-0443137785, Elseiver

Notes

Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Fotheringham, A. S., Brunsdon, C., Charlton, M. (2000). Quantitative Geography: Perspectives on Spatial Data Analysis. Bailey, T., Gatrell, A. (1995). Interactive Spatial Data Analysis. Güncel makaleler ve ders notları / Recent articles and lecture notes.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Uses basic knowledge of statistical methods
LO02 It estimates environmental parameters with the use of satellite technologies.
LO03 Analyzes environmental parameters.
LO04 Computes and analyzes information from satellite systems.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal At the end of the programme, the students acquire advanced knowledge on remote sensing and GIS theory. 5
PLO02 Bilgi - Kuramsal, Olgusal The students gain knowledge on remote sensing technologies, sensors and platforms and remotely sensed data. 5
PLO03 Bilgi - Kuramsal, Olgusal The students generate information using remotely sensed data and GIS together with database management skills.
PLO04 Bilgi - Kuramsal, Olgusal The students develop the necessary skills for selecting and using appropriate techniques and tools for engineering practices, using information technologies effectively, and collecting, analysing and interpreting data. 5
PLO05 Bilgi - Kuramsal, Olgusal The students gain knowledge to use current data and methods for multi-disciplinary research. 5
PLO06 Bilgi - Kuramsal, Olgusal The students gain technical competence and skills in using recent GIS and remote sensing software.
PLO07 Bilgi - Kuramsal, Olgusal The students acquire knowledge on potential practical fields of use of remotely sensed data, and use their theoretical and practical knowledge for problem solution in the related professional disciplines. 5
PLO08 Yetkinlikler - Öğrenme Yetkinliği Students will be able to calculate and interpret physical and atmospheric variables by processing the satellite data.
PLO09 Yetkinlikler - Öğrenme Yetkinliği Students can generate data for GIS projects using Remote Sensing techniques.
PLO10 Bilgi - Kuramsal, Olgusal Gains the ability to analyze and interpret geographic data with GIS techniques.
PLO11 Bilgi - Kuramsal, Olgusal Gains the ability of problem solving, solving, solution oriented application development.
PLO12 Yetkinlikler - Öğrenme Yetkinliği Acquires the ability to acquire, evaluate, record and apply information from satellite data. 5


Week Plan

Week Topic Preparation Methods
1 What are environmental parameters? Why are statistical methods important? What is thermal analysis? Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
2 Literature discussion Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
3 Literature discussion will be done Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
4 Determination of land surface temperature change by statistical methods Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
5 Spatial Statistical Modeling: Hotspot analysis Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
6 Getis Ord Gi Statistics Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
7 Anselin Local Moran I Statistics Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
8 Mid-Term Exam Ölçme Yöntemleri:
Yazılı Sınav
9 Application of statistical methods to thermal images Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
10 research of Application of statistical methods to thermal images Publication, Book Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
11 Applications Publication, Book, Software Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma
12 Monitoring thermal changes in industrial facilities with satellite systems Publication, Book, Software Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma
13 research of Monitoring thermal changes in industrial facilities with satellite systems Publication, Book, Software Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma
14 Monitoring thermal changes in thermal waters with satellite systems Publication, Book, Software Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma
15 Monitoring thermal changes in thermal waters with satellite systems studies Publication, Book, Software Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma
16 Term Exams Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 4 56
Assesment Related Works
Homeworks, Projects, Others 2 6 12
Mid-term Exams (Written, Oral, etc.) 1 20 20
Final Exam 1 24 24
Total Workload (Hour) 154
Total Workload / 25 (h) 6,16
ECTS 6 ECTS

Update Time: 09.05.2025 12:42