UA608 Big Data in Remote Sensing-II

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF NATURAL AND APPLIED SCIENCES
REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (PhD)
Code UA608
Name Big Data in Remote Sensing-II
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. NAZIM AKSAKER
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to introduce advanced analysis techniques, machine learning, and deep learning approaches in big data applications in remote sensing, and to equip students with the ability to apply these methods on cloud-based platforms.

Course Content

Big data processing methods in remote sensing; machine learning algorithms; deep learning models; advanced analysis applications in Google Earth Engine; classification and regression models; integration of multiple data sources; and project development in cloud-based analysis.

Course Precondition

There are no prerequisites.

Resources

Ghorbanian, A., et al. (2021). Cloud Computing in Remote Sensing: Big Data Applications. Lary, D. J. et al. (2016). Machine Learning in Geosciences. Google Earth Engine Developer Guide. Relevant journal articles and online tutorials.

Notes

Ghorbanian, A., et al. (2021). Cloud Computing in Remote Sensing: Big Data Applications. Lary, D. J. et al. (2016). Machine Learning in Geosciences. Google Earth Engine Developer Guide. Relevant journal articles and online tutorials.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Define advanced analysis methods in remote sensing.
LO02 Describe machine learning and deep learning algorithms.
LO03 Apply advanced analysis in Google Earth Engine.
LO04 Conduct multi-source data integration and project development.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal At the end of the programme, the students acquire advanced knowledge on remote sensing and GIS theory. 3
PLO02 Bilgi - Kuramsal, Olgusal The students gain knowledge on remote sensing technologies, sensors and platforms and remotely sensed data. 2
PLO03 Bilgi - Kuramsal, Olgusal The students generate information using remotely sensed data and GIS together with database management skills.
PLO04 Bilgi - Kuramsal, Olgusal The students develop the necessary skills for selecting and using appropriate techniques and tools for engineering practices, using information technologies effectively, and collecting, analysing and interpreting data.
PLO05 Bilgi - Kuramsal, Olgusal The students gain knowledge to use current data and methods for multi-disciplinary research. 3
PLO06 Bilgi - Kuramsal, Olgusal The students gain technical competence and skills in using recent GIS and remote sensing software.
PLO07 Bilgi - Kuramsal, Olgusal The students acquire knowledge on potential practical fields of use of remotely sensed data, and use their theoretical and practical knowledge for problem solution in the related professional disciplines. 2
PLO08 Yetkinlikler - Öğrenme Yetkinliği Students will be able to calculate and interpret physical and atmospheric variables by processing the satellite data. 3
PLO09 Yetkinlikler - Öğrenme Yetkinliği Students can generate data for GIS projects using Remote Sensing techniques. 2
PLO10 Bilgi - Kuramsal, Olgusal Gains the ability to analyze and interpret geographic data with GIS techniques.
PLO11 Bilgi - Kuramsal, Olgusal Gains the ability of problem solving, solving, solution oriented application development.
PLO12 Yetkinlikler - Öğrenme Yetkinliği Acquires the ability to acquire, evaluate, record and apply information from satellite data. 3


Week Plan

Week Topic Preparation Methods
1 Advanced big data concepts in remote sensing No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
2 Introduction to machine learning No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
3 Classification algorithms (RF, SVM) No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
4 Regression algorithms and applications No preliminary preparation required Öğretim Yöntemleri:
Soru-Cevap, Anlatım
5 Machine learning applications in Google Earth Engine No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
6 Introduction to deep learning No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
7 CNN and its applications in remote sensing No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
8 Mid-Term Exam Preliminary preparation required Ölçme Yöntemleri:
Yazılı Sınav, Ödev, Proje / Tasarım
9 Multi-source data integration No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
10 Data integration in GEE and sample applications No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
11 Time series analysis and change detection No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Tartışma
12 Big data applications in disaster management No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
13 Project development for cloud-based data No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Tartışma
14 Project presentations and discussions No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
15 General evaluation and closing No preliminary preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap
16 Term Exams Preliminary preparation required Ölçme Yöntemleri:
Ödev, Yazılı Sınav, Proje / Tasarım
17 Term Exams No preliminary preparation required Ölçme Yöntemleri:
Yazılı Sınav, Ödev, Proje / Tasarım


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 15 3 45
Out of Class Study (Preliminary Work, Practice) 15 4 60
Assesment Related Works
Homeworks, Projects, Others 1 20 20
Mid-term Exams (Written, Oral, etc.) 1 10 10
Final Exam 1 15 15
Total Workload (Hour) 150
Total Workload / 25 (h) 6,00
ECTS 6 ECTS

Update Time: 09.05.2025 09:36