Information
Code | ISB321 |
Name | Regression Analysis |
Term | 2022-2023 Academic Year |
Semester | 5. Semester |
Duration (T+A) | 3-0 (T-A) (17 Week) |
ECTS | 5 ECTS |
National Credit | 3 National Credit |
Teaching Language | Türkçe |
Level | Lisans Dersi |
Type | Normal |
Label | C Compulsory |
Mode of study | Yüz Yüze Öğretim |
Catalog Information Coordinator | Prof. Dr. MAHMUDE REVAN ÖZKALE |
Course Instructor |
Prof. Dr. MAHMUDE REVAN ÖZKALE
(A Group)
(Ins. in Charge)
|
Course Goal / Objective
To construct the necessary theoretical background in undergraduate teaching, to analyze the data that can be faced at the public and private sectors, to gain the knowledge, skills, and practicality for interpreting the results of the analysis.
Course Content
Parameter estimation and hypothesis testing in simple linear regression model. To detect outliers and influential observations.
Course Precondition
ders
Resources
Montgomery, D. C., Peck, E. A., Vining, G. G. (2001), Introduction to Linear Regression Analysis, 3rd edition, John Wiely and Sons Inc.
Notes
Aydın, D. (2014), Uygulamalı Regresyon Analizi Kavramlar ve Hesaplamaları, Nobel Akademik Yayıncılık, Ankara
Course Learning Outcomes
Order | Course Learning Outcomes |
---|---|
LO01 | Understand the creation of the regression model |
LO02 | Learn to estimate the model parameters |
LO03 | Apply confidence intervals and hypothesis tests about the parameters |
LO04 | Learn how to use the ANOVA table |
LO05 | Obtain the most appropriate model by examining the data |
LO06 | Check model assumptions |
LO07 | Create ANOVA table in multiple regression |
LO08 | Perform regression analysis by using the statistical package program |
Relation with Program Learning Outcome
Order | Type | Program Learning Outcomes | Level |
---|---|---|---|
PLO01 | Bilgi - Kuramsal, Olgusal | Explain the essence fundamentals and concepts in the field of Probability, Statistics and Mathematics | 3 |
PLO02 | Bilgi - Kuramsal, Olgusal | Emphasize the importance of Statistics in life | 4 |
PLO03 | Bilgi - Kuramsal, Olgusal | Define basic principles and concepts in the field of Law and Economics | |
PLO04 | Bilgi - Kuramsal, Olgusal | Produce numeric and statistical solutions in order to overcome the problems | 4 |
PLO05 | Bilgi - Kuramsal, Olgusal | Use proper methods and techniques to gather and/or to arrange the data | 5 |
PLO06 | Bilgi - Kuramsal, Olgusal | Utilize computer systems and softwares | 4 |
PLO07 | Bilgi - Kuramsal, Olgusal | Construct the model, solve and interpret the results by using mathematical and statistical tehniques for the problems that include random events | 4 |
PLO08 | Bilgi - Kuramsal, Olgusal | Apply the statistical analyze methods | 5 |
PLO09 | Bilgi - Kuramsal, Olgusal | Make statistical inference(estimation, hypothesis tests etc.) | 5 |
PLO10 | Bilgi - Kuramsal, Olgusal | Generate solutions for the problems in other disciplines by using statistical techniques | 4 |
PLO11 | Bilgi - Kuramsal, Olgusal | Discover the visual, database and web programming techniques and posses the ability of writing programme | 1 |
PLO12 | Bilgi - Kuramsal, Olgusal | Construct a model and analyze it by using statistical packages | 5 |
PLO13 | Beceriler - Bilişsel, Uygulamalı | Distinguish the difference between the statistical methods | 4 |
PLO14 | Beceriler - Bilişsel, Uygulamalı | Be aware of the interaction between the disciplines related to statistics | 2 |
PLO15 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Make oral and visual presentation for the results of statistical methods | 2 |
PLO16 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Have capability on effective and productive work in a group and individually | 2 |
PLO17 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Professional development in accordance with their interests and abilities, as well as the scientific, cultural, artistic and social fields, constantly improve themselves by identifying training needs | 1 |
PLO18 | Yetkinlikler - Öğrenme Yetkinliği | Develop scientific and ethical values in the fields of statistics-and scientific data collection | 4 |
Week Plan
Week | Topic | Preparation | Methods |
---|---|---|---|
1 | Conditional expected value, the concept of regression and model building | Source reading | |
2 | The creation of a simple linear regression model, the least squares estimators for the parameters, centered model | Source reading | |
3 | Properties of least squares estimators of parameters | Source reading | |
4 | Estimation error variance and examination of the properties of the fitted regression model | Source reading | |
5 | Maximum likelihood estimation of error variance and regression parameters | Source reading | |
6 | Tests of hypotheses about the parameters, test for significance of regression | Source reading | |
7 | Preparation and explanation of how to use the ANOVA table, examination of the coefficient of determination | Source reading | |
8 | Mid-Term Exam | Review the topics discussed in the lecture notes and sources | |
9 | Interval estimation of parameters, the interval estimation of the mean response, prediction of new observations | Source reading | |
10 | Regression through the origin, examination of the assumptions of the model (residual analysis), investigation of heteroskedasticity, normal probability graphics | Source reading | |
11 | Introduction to outliers and influential observations and examination of their effects on the the least squares estimators | Source reading | |
12 | Fitting multiple regression model, matrix notation and estimation of the regression parameters | Source reading | |
13 | Examining the distributional properties of least squares estimators of regression parameters, and the error variance | Source reading | |
14 | The creation of multiple regression ANOVA table and tests of hypotheses about the parameters of the regression | Source reading | |
15 | Application on the creation of multiple regression ANOVA table and tests of hypotheses about the parameters of the regression | Source reading | |
16 | Determination of the influential observations in multiple regression | Source reading | |
17 | Term Exams | Review the topics discussed in the lecture notes and sources |
Student Workload - ECTS
Works | Number | Time (Hour) | Workload (Hour) |
---|---|---|---|
Course Related Works | |||
Class Time (Exam weeks are excluded) | 14 | 3 | 42 |
Out of Class Study (Preliminary Work, Practice) | 14 | 3 | 42 |
Assesment Related Works | |||
Homeworks, Projects, Others | 0 | 0 | 0 |
Mid-term Exams (Written, Oral, etc.) | 1 | 12 | 12 |
Final Exam | 1 | 18 | 18 |
Total Workload (Hour) | 114 | ||
Total Workload / 25 (h) | 4,56 | ||
ECTS | 5 ECTS |