Information
Code | BMM0077 |
Name | Physics of Semiconductor Devices |
Term | 2022-2023 Academic Year |
Term | Spring |
Duration (T+A) | 3-0 (T-A) (17 Week) |
ECTS | 6 ECTS |
National Credit | 3 National Credit |
Teaching Language | Türkçe |
Level | Yüksek Lisans Dersi |
Type | Normal |
Mode of study | Yüz Yüze Öğretim |
Catalog Information Coordinator | |
Course Instructor |
1 |
Course Goal / Objective
The aim of this course is to learn the physical foundations of the phenomenons that occur during the operation in the semiconductor circuit devices.
Course Content
Crystal Structure of solids, Introduction to quantum mechanics, Inroduction to quantum theory of solids, Energy-band theorem, Theory of electrical conduction, Generation-recombination phenomena, The PN junction diode, Metal-semiconductor contacts, The MOS transistor
Course Precondition
The course has no prerequisites.
Resources
Donald A. Neamen, "Semiconductor Physics and Devices, Basic Principles", McGrawHill, 4th Ed.
Notes
J. P. Colinge, C.A. Colinge, "Physics of Semiconductor Devices", Springer. Simon M. Sze, Kwok K. Ng, "Physics of Semiconductor Devices ", Wiley.
Course Learning Outcomes
Order | Course Learning Outcomes |
---|---|
LO01 | Learn the crystal lattice of solids |
LO02 | Understan Bohr's atom model |
LO03 | Define the wave-particle duality |
LO04 | Understand Heisenberg's uncertainty principle |
LO05 | Derive the Schrödinger's wave equation |
LO06 | Analyze with quantum mechanics |
LO07 | Analyze semiconductors in equilibrium |
LO08 | Understand the carrier transport phenomena |
LO09 | Define PN junction diode |
LO10 | Define MOSFET device |
Relation with Program Learning Outcome
Order | Type | Program Learning Outcomes | Level |
---|---|---|---|
PLO01 | Bilgi - Kuramsal, Olgusal | To be able to solve scientific problems encountered in the field of medicine and medical technologies by applying current and advanced technical approaches of mathematics, science and engineering sciences. | 3 |
PLO02 | Yetkinlikler - Öğrenme Yetkinliği | To have a knowledge of the literature related to a sub-discipline of biomedical engineering, to define and model current problems. | 1 |
PLO03 | Beceriler - Bilişsel, Uygulamalı | Ability to analyze data, design and conduct experiments, and interpret results | 4 |
PLO04 | Beceriler - Bilişsel, Uygulamalı | Developing researched contemporary techniques and computational tools for engineering applications | 5 |
PLO05 | Beceriler - Bilişsel, Uygulamalı | To be able to analyze and design a process in line with a defined target | 3 |
PLO06 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Conducting scientific studies with a medical doctor from an engineering perspective. | 4 |
PLO07 | Yetkinlikler - İletişim ve Sosyal Yetkinlik | Expressing own findings orally and in writing, clearly and concisely. | 1 |
PLO08 | Yetkinlikler - Öğrenme Yetkinliği | To be able to improve oneself by embracing the importance of lifelong learning and by following the developments in science-technology and contemporary issues. | |
PLO09 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Ability to act independently, set priorities and creativity. | |
PLO10 | Yetkinlikler - Alana Özgü Yetkinlik | Being aware of national and international contemporary scientific and social problems in the field of Biomedical Engineering. | |
PLO11 | Yetkinlikler - Alana Özgü Yetkinlik | To be able to evaluate the contribution of engineering solutions to problems in medicine, medical technologies and health in a global and social context. |
Week Plan
Week | Topic | Preparation | Methods |
---|---|---|---|
1 | Crystal structure of solids | Reading course materials | Öğretim Yöntemleri: Anlatım |
2 | Bohr atom model, lectromagnetic spectrum | Reading course materials | Öğretim Yöntemleri: Anlatım |
3 | Photoelectric effect, black body radiation, Compton effect, wave-particle duality, the uncertainty principle | Reading course materials | Öğretim Yöntemleri: Anlatım |
4 | Schrödinger wave equation, Physical meaning of the Schrödinger wave equation | Reading course materials | Öğretim Yöntemleri: Anlatım |
5 | Applications of the Schrödinger wave equation | Reading course materials | Öğretim Yöntemleri: Anlatım |
6 | Energy band theory | Reading course materials | Öğretim Yöntemleri: Anlatım |
7 | Electrical conduction in solids | Reading course materials | Öğretim Yöntemleri: Anlatım |
8 | Mid-Term Exam | Reading course materials | Ölçme Yöntemleri: Yazılı Sınav |
9 | Semiconductor in equilibrium | Reading course materials | Öğretim Yöntemleri: Anlatım |
10 | Carrier transport | Reading course materials | Öğretim Yöntemleri: Anlatım |
11 | The PN Junction | Reading course materials | Öğretim Yöntemleri: Anlatım |
12 | The PN junction diode | Reading course materials | Öğretim Yöntemleri: Anlatım |
13 | Metal-semiconductor and semiconductor heterojunctions | Reading course materials | Öğretim Yöntemleri: Anlatım |
14 | Fundamentals of MOSFET | Reading course materials | Öğretim Yöntemleri: Anlatım |
15 | The Bipolar Transistor | Reading course materials | Öğretim Yöntemleri: Anlatım |
16 | Term Exams | Reading course materials | Ölçme Yöntemleri: Yazılı Sınav |
17 | Term Exams | Reading course materials | Ölçme Yöntemleri: Yazılı Sınav |
Student Workload - ECTS
Works | Number | Time (Hour) | Workload (Hour) |
---|---|---|---|
Course Related Works | |||
Class Time (Exam weeks are excluded) | 14 | 3 | 42 |
Out of Class Study (Preliminary Work, Practice) | 14 | 5 | 70 |
Assesment Related Works | |||
Homeworks, Projects, Others | 0 | 0 | 0 |
Mid-term Exams (Written, Oral, etc.) | 1 | 15 | 15 |
Final Exam | 1 | 30 | 30 |
Total Workload (Hour) | 157 | ||
Total Workload / 25 (h) | 6,28 | ||
ECTS | 6 ECTS |