ISB221 Optimization Techniques - I

5 ECTS - 3-0 Duration (T+A)- 3. Semester- 3 National Credit

Information

Code ISB221
Name Optimization Techniques - I
Term 2023-2024 Academic Year
Semester 3. Semester
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Lisans Dersi
Type Normal
Label C Compulsory
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. NİMET ÖZBAY
Course Instructor Doç. Dr. NİMET ÖZBAY (A Group) (Ins. in Charge)


Course Goal / Objective

To develop and solve a model for linear programming problems, to learn and solve transportation problems

Course Content

Definitions related to the Linear Programming Problem, Examples related to the Linear Programming Problem and Developing the Model, Hyperplanes, Convex Sets, Linear Functions on Convex Sets, Graphical Solution Method, Gauss Jordan Elimination, Linear Programming Problems in Canonical Form, Analytical Solution Method, The Simplex Method, Two Phase Method, Big M Method, Duality, Transportation Problems and Solution Methods.

Course Precondition

None

Resources

-Elementary Linear Programing With Applications, Bernard Kolman and Robert E. Beck, Academic Press, 1980. -Doğrusal Programlama, Prof. Dr. İmdat Kara, Bilim Teknik Yayınevi, 1991. -Yöneylem Araştırması, Hamdy A. Taha (Çevirenler : Ş. Alp Baray-Şakir Esnaf), Literatür Yayıncılık, 2000. -Optimizasyon, Ayşen Apaydın, A.Ü.F.F. Dön. Ser. Yayınları, 1996. -Optimizasyon Teknikleri, Hasan Bal, Gazi Üniversitesi Yayınları, 1995. -İşletmede Sayısal Yöntemler ve Winqsb Uygulamaları, Prof. Dr. İsmail Erdem, Seçkin Yayıncılık, 2017.

Notes

Lecture Notes


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Describes the properties of the linear programming problem
LO02 Builds the linear programming model, solves this problem by graphical and analytical methods
LO03 Uses the simplex solution method
LO04 Distinguish the difference between the simplex and two phase methods
LO05 Uses the two phase method
LO06 Comprehends the Big M method
LO07 Write dual of the linear programming model
LO08 Solves balanced and unbalanced transportation models


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain the essence fundamentals and concepts in the field of Probability, Statistics and Mathematics 5
PLO02 Bilgi - Kuramsal, Olgusal Emphasize the importance of Statistics in life 5
PLO03 Bilgi - Kuramsal, Olgusal Define basic principles and concepts in the field of Law and Economics
PLO04 Bilgi - Kuramsal, Olgusal Produce numeric and statistical solutions in order to overcome the problems 5
PLO05 Bilgi - Kuramsal, Olgusal Use proper methods and techniques to gather and/or to arrange the data 2
PLO06 Bilgi - Kuramsal, Olgusal Utilize computer systems and softwares 2
PLO07 Bilgi - Kuramsal, Olgusal Construct the model, solve and interpret the results by using mathematical and statistical tehniques for the problems that include random events 5
PLO08 Bilgi - Kuramsal, Olgusal Apply the statistical analyze methods 4
PLO09 Bilgi - Kuramsal, Olgusal Make statistical inference(estimation, hypothesis tests etc.)
PLO10 Bilgi - Kuramsal, Olgusal Generate solutions for the problems in other disciplines by using statistical techniques 4
PLO11 Bilgi - Kuramsal, Olgusal Discover the visual, database and web programming techniques and posses the ability of writing programme
PLO12 Bilgi - Kuramsal, Olgusal Construct a model and analyze it by using statistical packages
PLO13 Beceriler - Bilişsel, Uygulamalı Distinguish the difference between the statistical methods 5
PLO14 Beceriler - Bilişsel, Uygulamalı Be aware of the interaction between the disciplines related to statistics 4
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Make oral and visual presentation for the results of statistical methods 4
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Have capability on effective and productive work in a group and individually 2
PLO17 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Professional development in accordance with their interests and abilities, as well as the scientific, cultural, artistic and social fields, constantly improve themselves by identifying training needs 2
PLO18 Yetkinlikler - Öğrenme Yetkinliği Develop scientific and ethical values in the fields of statistics-and scientific data collection 2


Week Plan

Week Topic Preparation Methods
1 Definitions related to the Linear Programming Problem, Examples related to the Linear Programming Problem and Developing the Model Source reading
2 Hyperplanes, Convex Sets, Linear Functions on Convex Sets Source reading
3 Graphical Solution Method Source reading
4 Gauss Jordan Elimination, Linear Programming Problems in Canonical Form Source reading
5 Analytical Solution Method Source reading
6 Simplex Solution Method Source reading
7 Problem Solving-1 Source reading
8 Mid-Term Exam Review the topics discussed in the lecture notes and sources
9 Two Phase Method-1 Source reading
10 Two Phase Method-2 Source reading
11 Big M Method Source reading
12 The Dual of the Linear Programming Model Source reading
13 Balanced Transportation Model and Solution Methods-1 Source reading
14 Unbalanced Transportation Model and Solution Methods-2 Source reading
15 Problem Solving-2 Source reading
16 Term Exams Review the topics discussed in the lecture notes and sources
17 Term Exams Review the topics discussed in the lecture notes and sources


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 18 18
Total Workload (Hour) 114
Total Workload / 25 (h) 4,56
ECTS 5 ECTS

Update Time: 02.05.2023 08:47