Information
Code | MATZ108 |
Name | Calculus II |
Term | 2023-2024 Academic Year |
Semester | 2. Semester |
Duration (T+A) | 4-0 (T-A) (17 Week) |
ECTS | 6 ECTS |
National Credit | 4 National Credit |
Teaching Language | Türkçe |
Level | Lisans Dersi |
Type | Normal |
Label | FE Field Education Courses C Compulsory |
Mode of study | Yüz Yüze Öğretim |
Catalog Information Coordinator | Prof. Dr. PERİHAN ARTUT |
Course Instructor |
Prof. Dr. PERİHAN ARTUT
(A Group)
(Ins. in Charge)
|
Course Goal / Objective
The main purpose of this course is to provide students to learn mathematical thiking methods , develop application of derivation and integral concept.
Course Content
Application of derivetions (Extreme Values of Functions, The Mean Value Theorem, Monotonic Functions and the First Derivative Test, Concavity and Curve Sketching, Applied Optimization, ), İntegrals (Techniques of Integration, Applications of Integration, Further Applications of Integration, Definite Integral, arc length, area and volum)
Course Precondition
none
Resources
Genel Matematik, Ekrem Kadıoğlu, Muhammet Kamali, Genel Matematik, Mustafa Balcı, Analize Giriş, Fikri Akdeniz, Yusuf Ünlü, Doğan Dönmez
Notes
https://library.cu.edu.tr/cu/e-kaynaklar/veritabanlari
Course Learning Outcomes
Order | Course Learning Outcomes |
---|---|
LO01 | Explains applications of the derivative |
LO02 | Explains the integral and its applications |
LO03 | Makes applications of integral |
LO04 | Explains the definite integral concept |
Relation with Program Learning Outcome
Order | Type | Program Learning Outcomes | Level |
---|---|---|---|
PLO01 | Bilgi - Kuramsal, Olgusal | Has enough knowledge about mathematics. | 5 |
PLO02 | Bilgi - Kuramsal, Olgusal | Has pedagogical knowledge about teaching profession and field. | |
PLO03 | Bilgi - Kuramsal, Olgusal | Implements classroom management approaches to be used in educational environments effectively. | |
PLO04 | Bilgi - Kuramsal, Olgusal | Prepares the learning environments in which appropriate teaching methods are used for effective mathematics education in accordance with development and age levels. | |
PLO05 | Bilgi - Kuramsal, Olgusal | Knows the relationship between Mathematics-Society-Environment-History and uses it in professional and daily life. | |
PLO06 | Bilgi - Kuramsal, Olgusal | Uses Turkish properly and effectively according to the rules. | |
PLO07 | Bilgi - Kuramsal, Olgusal | Selects and designs appropriate materials, in mathematics teaching. | |
PLO08 | Bilgi - Kuramsal, Olgusal | Monitors students' progress using different assessment and evaluation methods and techniques. | |
PLO09 | Bilgi - Kuramsal, Olgusal | Takes responsibility as an individual and as a team member to solve problems related to the field. | |
PLO10 | Beceriler - Bilişsel, Uygulamalı | Has life-long learning awareness. | |
PLO11 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Shares his/her knowledge and skills, problems and solutions that he/she identified by means of oral and written communication with the expert and non-expert people. | |
PLO12 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Uses information and communication technologies and other related materials for an effective mathematics teaching. | |
PLO13 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Has enough foreign language knowledge to follow foreign resources related to the field. | |
PLO14 | Yetkinlikler - Öğrenme Yetkinliği | Has the knowledge of the purpose, structure and functioning of the Turkish education system. | |
PLO15 | Yetkinlikler - Öğrenme Yetkinliği | Becomes a teacher who adheres to Atatürk's principles and revolutions. |
Week Plan
Week | Topic | Preparation | Methods |
---|---|---|---|
1 | Some theorems about differentiable functions | Kadıoğlu ve Kamali (2005) de ilgili bölüm Akdeniz , Ünlü ve Dönmez (2007) de ilgili bölüm | |
2 | Monotonic function and Minimum and Maximum Values, Critical Points | Kadıoğlu ve Kamali (2005) de ilgili bölüm Akdeniz , Ünlü ve Dönmez (2007) de ilgili bölüm | |
3 | L Hospital s Rule and Indeterminate Forms | Kadıoğlu ve Kamali (2005) de ilgili bölüm Akdeniz , Ünlü ve Dönmez (2007) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
4 | Graph of functions | Kadıoğlu ve Kamali (2005) de ilgili bölüm Akdeniz , Ünlü ve Dönmez (2007) de ilgili bölüm | |
5 | Some aplications about derivation | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
6 | Properties of the Indefinite Integraltemel integrasyon formülleri Indefinite Integrals and Computing Indefinite Integrals, integrations formulas | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
7 | Substitution Rule for Indefinite Integrals | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
8 | Mid-Term Exam | preparing exam | |
9 | Integrating Rational Functions by Partial Fractions | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
10 | Integrals Involving Trigonometric Functions | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
11 | Riemann sum, definite integrals | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
12 | Fundemantal İntegrals Theorems | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
13 | Practices about Fundemantal İntegrals Theorems | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
14 | İntegration method and definite integrals | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
15 | arc length, area | Kadıoğlu ve Kamali (2005) de ilgili bölüm Balcı (2000) da ilgili bölüm | |
16 | Term Exams | preparing exam | |
17 | Term Exams | preparing exam |
Student Workload - ECTS
Works | Number | Time (Hour) | Workload (Hour) |
---|---|---|---|
Course Related Works | |||
Class Time (Exam weeks are excluded) | 14 | 4 | 56 |
Out of Class Study (Preliminary Work, Practice) | 14 | 4 | 56 |
Assesment Related Works | |||
Homeworks, Projects, Others | 1 | 0 | 0 |
Mid-term Exams (Written, Oral, etc.) | 1 | 8 | 8 |
Final Exam | 1 | 24 | 24 |
Total Workload (Hour) | 144 | ||
Total Workload / 25 (h) | 5,76 | ||
ECTS | 6 ECTS |