Information
Unit | INSTITUTE OF SOCIAL SCIENCES |
ECONOMETRICS (PhD) | |
Code | IEM1844 |
Name | Advanced Statistical Data Analysis |
Term | 2024-2025 Academic Year |
Term | Fall and Spring |
Duration (T+A) | 4-0 (T-A) (17 Week) |
ECTS | 8 ECTS |
National Credit | 4 National Credit |
Teaching Language | Türkçe |
Level | Doktora Dersi |
Type | Normal |
Mode of study | Yüz Yüze Öğretim |
Catalog Information Coordinator | Prof. Dr. GÜLSEN KIRAL |
Course Instructor |
The current term course schedule has not been prepared yet.
|
Course Goal / Objective
The aim of the course is to refresh students' statistical knowledge, introduce them to complex and advanced statistical techniques, and inform them about the applications of these techniques through scientific articles and presentations. It is also aimed to provide the ability to model data using statistical package programs and to make statistical comments about the proposed model.
Course Content
The course content includes explaining the basic concepts related to advanced statistical data analysis, reinforcing these concepts with examples, and performing applications on computers to further concretize them.
Course Precondition
There are no prerequisites.
Resources
Freund, J. E., & Miller, M. (2004). John E. Freund's Mathematical Statistics: With Applications. Pearson Education India. Chatterjee, S., & Hadi, A. S. (2000). B. Price Regression analysis by example.
Notes
Rawlings, J. O. (1988). Applied regression analysis: a research tool. Wadsworth & Brooks. Pacific Grove, CA. Alpar, C. (2017). Uygulamalı çok değişkenli istatistiksel yöntemler.
Course Learning Outcomes
Order | Course Learning Outcomes |
---|---|
LO01 | Defines continuous distributions. |
LO02 | Explain the probability integral transform. |
LO03 | Applies sampling distributions. |
LO04 | Explains rank statistics. |
LO05 | Explains regression and ANOVA. |
LO06 | Explains multivariate discriminant analysis. |
LO07 | Explains cluster analysis. |
Relation with Program Learning Outcome
Order | Type | Program Learning Outcomes | Level |
---|---|---|---|
PLO01 | Bilgi - Kuramsal, Olgusal | Identify an econometric problem and propose a new solution to it | |
PLO02 | Bilgi - Kuramsal, Olgusal | Develops new knowledge using current concepts in Econometrics, Statistics and Operations Research | 3 |
PLO03 | Bilgi - Kuramsal, Olgusal | Explain for what purpose and how econometric methods are applied to other fields and disciplines | 2 |
PLO04 | Beceriler - Bilişsel, Uygulamalı | Using her knowledge, brings original solutions to problems in Economics, Business Administration and other social sciences | 3 |
PLO05 | Beceriler - Bilişsel, Uygulamalı | Creates a new model using mathematics, statistics and econometrics knowledge to solve the problem encountered | 4 |
PLO06 | Beceriler - Bilişsel, Uygulamalı | Interprets the results obtained from the most appropriate method to predict the model | 3 |
PLO07 | Beceriler - Bilişsel, Uygulamalı | Performs conceptual analysis to develop solutions to problems | 2 |
PLO08 | Beceriler - Bilişsel, Uygulamalı | Collects data on purpose | 4 |
PLO09 | Beceriler - Bilişsel, Uygulamalı | Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research | |
PLO10 | Beceriler - Bilişsel, Uygulamalı | Presents analysis results conveniently | 3 |
PLO11 | Beceriler - Bilişsel, Uygulamalı | Converts its findings into a master's thesis or a professional report in Turkish or a foreign language | 4 |
PLO12 | Beceriler - Bilişsel, Uygulamalı | It researches current approaches and methods to solve the problems it encounters and proposes new solutions | 4 |
PLO13 | Beceriler - Bilişsel, Uygulamalı | Develops long-term plans and strategies using econometric and statistical methods | 3 |
PLO14 | Beceriler - Bilişsel, Uygulamalı | Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research | 3 |
PLO15 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Performs self-study using knowledge of Econometrics, Statistics and Operations to solve a problem | 4 |
PLO16 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Leads the team by taking responsibility | 3 |
PLO17 | Yetkinlikler - Öğrenme Yetkinliği | Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study | |
PLO18 | Yetkinlikler - İletişim ve Sosyal Yetkinlik | Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution | 3 |
PLO19 | Yetkinlikler - İletişim ve Sosyal Yetkinlik | Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form | 4 |
PLO20 | Yetkinlikler - Alana Özgü Yetkinlik | Applies social, scientific and professional ethical values | 3 |
PLO21 | Yetkinlikler - Alana Özgü Yetkinlik | Interprets data on economic and social events by following current issues | 2 |
Week Plan
Week | Topic | Preparation | Methods |
---|---|---|---|
1 | Continuous distributions (exponential, gamma, beta, normal distributions) | Reading | Öğretim Yöntemleri: Anlatım, Tartışma |
2 | Continuous distributions | Reading | Öğretim Yöntemleri: Anlatım |
3 | Probability integral transform | Reading | Öğretim Yöntemleri: Anlatım, Soru-Cevap |
4 | Variable substitution with multivariate distributions, Central limit theorem | Reading | Öğretim Yöntemleri: Anlatım |
5 | Sampling distributions | Reading | Öğretim Yöntemleri: Anlatım |
6 | Rank statistics | Reading | Öğretim Yöntemleri: Anlatım, Soru-Cevap |
7 | Review | Reading | Öğretim Yöntemleri: Anlatım |
8 | Mid-Term Exam | Preparing for the midterm exam | Ölçme Yöntemleri: Yazılı Sınav |
9 | statistical inference. | Reading | Öğretim Yöntemleri: Anlatım |
10 | regression and ANOVA | Reading | Öğretim Yöntemleri: Anlatım |
11 | parameterless statistical applications, multivariate regression. | Reading | Öğretim Yöntemleri: Anlatım |
12 | multivariate discriminant analysis | Reading | Öğretim Yöntemleri: Anlatım |
13 | MANOVA, MANCOVA | Reading | Öğretim Yöntemleri: Anlatım, Tartışma |
14 | logistic regression, probit regression | Reading | Öğretim Yöntemleri: Anlatım |
15 | topit, combined analysis, cluster analysis. | Reading | Öğretim Yöntemleri: Anlatım, Soru-Cevap |
16 | Term Exams | Final exam preparation | Ölçme Yöntemleri: Yazılı Sınav |
17 | Term Exams | Final exam preparation | Ölçme Yöntemleri: Yazılı Sınav |
Student Workload - ECTS
Works | Number | Time (Hour) | Workload (Hour) |
---|---|---|---|
Course Related Works | |||
Class Time (Exam weeks are excluded) | 14 | 4 | 56 |
Out of Class Study (Preliminary Work, Practice) | 14 | 8 | 112 |
Assesment Related Works | |||
Homeworks, Projects, Others | 2 | 4 | 8 |
Mid-term Exams (Written, Oral, etc.) | 1 | 12 | 12 |
Final Exam | 1 | 24 | 24 |
Total Workload (Hour) | 212 | ||
Total Workload / 25 (h) | 8,48 | ||
ECTS | 8 ECTS |