IEM1833 Probability Theory and Mathematical Statistics I

8 ECTS - 4-0 Duration (T+A)- . Semester- 4 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
ECONOMETRICS (PhD)
Code IEM1833
Name Probability Theory and Mathematical Statistics I
Term 2024-2025 Academic Year
Term Fall and Spring
Duration (T+A) 4-0 (T-A) (17 Week)
ECTS 8 ECTS
National Credit 4 National Credit
Teaching Language Türkçe
Level Doktora Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. GÜLSEN KIRAL
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of the course is to make students familiar with all the concepts of probability theory.

Course Content

This course covers that Axioms of probability, conditional probability and independence, random variables, Joint Distribution functions, order statistics,The principles of competence, limit theorems, principles of data reduction, Point Estimation, hypothesis testing, Interval estimates.

Course Precondition

There are no prerequisites.

Resources

Knight, K. (1999). Mathematical statistics. CRC Press. Shao, J. (2008). Mathematical statistics. Springer Science & Business Media. Akdi, Y. (2005). Matematiksel istatistiğe giriş. Bıçaklar Kitabevi. Hogg, R. V., McKean, J. W., & Craig, A. T. (2013). Introduction to mathematical statistics. Pearson Education India.

Notes

Hasgür, İ. (2000). Matematiksel istatistik. Seçkin Yayınevi. Aytaç, M. (2012). Matematiksel istatistik. Ezgi Kitabevi Yayınları. Freund, J. E., Miller, I., Miller, M., & Şenesen, Ü. (2002). John E. Freund'dan matematiksel istatistik. Literatür.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Describes the basic principles of probability calculations.
LO02 Explains concepts such as conditional probability and independence.
LO03 Explain point estimation using estimator finding methods.
LO04 Creates and explains hypotheses using hypothesis finding methods.
LO05 Applies interval estimation with interval estimation methods.
LO06 Understands the axioms of probability and explains how they are used.
LO07 Explains estimators with their estimator properties.
LO08 Explains common distribution functions.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Identify an econometric problem and propose a new solution to it 4
PLO02 Bilgi - Kuramsal, Olgusal Develops new knowledge using current concepts in Econometrics, Statistics and Operations Research 3
PLO03 Bilgi - Kuramsal, Olgusal Explain for what purpose and how econometric methods are applied to other fields and disciplines 3
PLO04 Beceriler - Bilişsel, Uygulamalı Using her knowledge, brings original solutions to problems in Economics, Business Administration and other social sciences
PLO05 Beceriler - Bilişsel, Uygulamalı Creates a new model using mathematics, statistics and econometrics knowledge to solve the problem encountered 4
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 3
PLO07 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems 4
PLO08 Beceriler - Bilişsel, Uygulamalı Collects data on purpose 4
PLO09 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research 2
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently 3
PLO11 Beceriler - Bilişsel, Uygulamalı Converts its findings into a master's thesis or a professional report in Turkish or a foreign language
PLO12 Beceriler - Bilişsel, Uygulamalı It researches current approaches and methods to solve the problems it encounters and proposes new solutions 2
PLO13 Beceriler - Bilişsel, Uygulamalı Develops long-term plans and strategies using econometric and statistical methods 2
PLO14 Beceriler - Bilişsel, Uygulamalı Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research 3
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs self-study using knowledge of Econometrics, Statistics and Operations to solve a problem 2
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads the team by taking responsibility 4
PLO17 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study 3
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution
PLO19 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form 3
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values 4
PLO21 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues 3


Week Plan

Week Topic Preparation Methods
1 Probability theory and its Axiomatic Foundations Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Tartışma
2 Random variables and distribution functions Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Soru-Cevap
3 Transformations and expectations Reading Öğretim Yöntemleri:
Anlatım
4 Multiple random variables, joint and marginal Distributions. Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Tartışma
5 Properties of a random sample Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
6 Principles of data reduction, likelihood function Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
7 Point estimation, finding estimators Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
8 Mid-Term Exam Preparing for the midterm exam Ölçme Yöntemleri:
Yazılı Sınav
9 Point estimation, evaluation of estimators Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
10 Methods of finding hypothesis tests Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
11 Hypothesis Tests Evaluation Methods Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
12 Asymptotic Distributions Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
13 Interval forecasts and finding interval estimators Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
14 Interval forecasts and evaluation interval estimators Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
15 Additional Topics Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Soru-Cevap
16 Term Exams Final exam preparation Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Final exam preparation Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 8 112
Assesment Related Works
Homeworks, Projects, Others 2 4 8
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 24 24
Total Workload (Hour) 212
Total Workload / 25 (h) 8,48
ECTS 8 ECTS

Update Time: 27.02.2025 03:43