SD0691 Artificial Intelligence Tools

3 ECTS - 2-0 Duration (T+A)- 0. Semester- 2 National Credit

Information

Code SD0691
Name Artificial Intelligence Tools
Term 2024-2025 Academic Year
Term Spring
Duration (T+A) 2-0 (T-A) (17 Week)
ECTS 3 ECTS
National Credit 2 National Credit
Teaching Language Türkçe
Level Üniversite Dersi
Label UCC University Common Course
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Öğr. Gör.Dr. ALİ KEMAL UĞUR
Course Instructor Öğr. Gör.Dr. ALİ KEMAL UĞUR (A Group) (Ins. in Charge)


Course Goal / Objective

The aim of the course is to provide students with an understanding of artificial intelligence technologies, how to use these technologies effectively in various applications, and awareness of ethical and security issues that may be encountered in this process.

Course Content

Artificial Intelligence Introduction and Basic Concepts, Prompt Engineering, Prompt Patterns, Artificial Intelligence Tools and Platforms, Data Science and Data Analysis, Ethics and Security.

Course Precondition

Resources

Artificial Intelligence Lecture Notes, Ali Kemal UĞUR.

Notes

ChatGPT, The Magic of Digital Language, Şahap ALTINBAŞ.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explains the basic concepts, history and development process of artificial intelligence.
LO02 Explains the differences between narrow AI, general AI, and super AI.
LO03 It creates effective and accurate prompts for artificial intelligence models.
LO04 Performs text analysis using natural language processing techniques and tools.
LO05 Effectively implements data collection, cleaning and preparation processes.
LO06 Realizes projects by installing and using popular artificial intelligence tools and platforms.
LO07 Identifies ethical and security issues that may be encountered in artificial intelligence applications.
LO08 Makes conscious and responsible decisions on ethical and security issues.


Week Plan

Week Topic Preparation Methods
1 Introduction and Basic Concepts Examining the course information package Öğretim Yöntemleri:
Anlatım, Soru-Cevap
2 Types of Artificial Intelligence Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap
3 Machine Learning Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
4 Prompt Engineering Techniques 1 Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
5 Prompt Engineering Techniques 2 Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
6 Data Collection and Preparation Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
7 Data Cleansing Techniques Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
8 Mid-Term Exam Ölçme Yöntemleri:
Yazılı Sınav
9 Artificial Intelligence Tools 1 Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
10 Artificial Intelligence Tools 2 Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
11 Artificial Intelligence Tools 3 Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma
12 Project Creation and Planning with Artificial Intelligence 1 Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Grup Çalışması, Beyin Fırtınası
13 Project Creation and Planning with Artificial Intelligence 2 Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Grup Çalışması, Beyin Fırtınası
14 Project Creation and Planning with Artificial Intelligence 3 Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Grup Çalışması, Beyin Fırtınası
15 Ethics and Security in Artificial Intelligence Review of previous topics and review of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
16 Term Exams Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 2 28
Out of Class Study (Preliminary Work, Practice) 14 2 28
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 6 6
Final Exam 1 16 16
Total Workload (Hour) 78
Total Workload / 25 (h) 3,12
ECTS 3 ECTS

Update Time: 12.02.2025 02:47