BBZ312 Data Analysis with R

5 ECTS - 3-1 Duration (T+A)- 6. Semester- 3.5 National Credit

Information

Unit FACULTY OF SCIENCE AND LETTERS
COMPUTER SCIENCES PR.
Code BBZ312
Name Data Analysis with R
Term 2025-2026 Academic Year
Semester 6. Semester
Duration (T+A) 3-1 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 3.5 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Label FE Field Education Courses E Elective
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. GÜZİN YÜKSEL
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The goal of this course is to teach students the basics of the R programming language and how to use R for data analysis.

Course Content

In this course, data structures and data entry, various mathematical and statistical operations, graph drawings, random number generation, solving problems with simulation, writing functions for various methods, cross tables, hypothesis testing are covered using the R programming language.

Course Precondition

It is not available.

Resources

İstatistikte R ile programlama, 2014, Necmi Gürsakal, Dora Yayıncılık 2.

Notes

VAKFI YAYINCILIK - AKADEMİK KİTAPLAR. A Tiny Handbook of R, Mike Allerhand, 2011, Springer-Verlag.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Installs the R program on their personal computers.
LO02 Generates random numbers with R program.
LO03 Performs applications related to probability distributions.
LO04 Uses the R programming language in data analysis.
LO05 Çeşitli olasılık problemlerinin R'da simulasyon ile çözümünü elde eder.
LO06 Defines functions for hypothesis testing in R.
LO07 Generates code for ANOVA and t-tests.
LO08 Implements linear regression analysis in R.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Gain comprehensive knowledge of fundamental concepts, algorithms, and data structures in Computer Science. 4
PLO02 Bilgi - Kuramsal, Olgusal Learn essential computer topics such as software development, programming languages, and database management 4
PLO03 Bilgi - Kuramsal, Olgusal Understand advanced computer fields like data science, artificial intelligence, and machine learning. 3
PLO04 Bilgi - Kuramsal, Olgusal Acquire knowledge of topics like computer networks, cybersecurity, and database design.
PLO05 Beceriler - Bilişsel, Uygulamalı Develop skills in designing, implementing, and analyzing algorithms 3
PLO06 Beceriler - Bilişsel, Uygulamalı Gain proficiency in using various programming languages effectively 4
PLO07 Beceriler - Bilişsel, Uygulamalı Learn skills in data analysis, database management, and processing large datasets. 3
PLO08 Beceriler - Bilişsel, Uygulamalı Acquire practical experience through working on software development projects.
PLO09 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Strengthen teamwork and communication skills.
PLO10 Yetkinlikler - Alana Özgü Yetkinlik Foster a mindset open to technological innovations.
PLO11 Yetkinlikler - Öğrenme Yetkinliği Encourage the capacity for continuous learning and self-improvement. 3
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Enhance the ability to solve complex problems 3


Week Plan

Week Topic Preparation Methods
1 Installation of R software and introduction to programming Reading from sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma, Soru-Cevap
2 Data structures and data entry in R Reading from sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma
3 Various mathematical and statistical operations using vectors, matrices and data frames Reading from sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
4 Graphic drawings Reading from sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma, Bireysel Çalışma
5 Random number generation from various probability distributions Reading from sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma, Alıştırma ve Uygulama
6 Solving various probability problems with simulation in R Reading from sources Öğretim Yöntemleri:
Soru-Cevap, Alıştırma ve Uygulama
7 Writing a function in R Reading from sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma
8 Mid-Term Exam Reading lecture notes and resources. Ölçme Yöntemleri:
Yazılı Sınav
9 Cross Tables Reading from sources Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
10 Hypothesis testing for one and two samples Reading from sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
11 Write functions for hypothesis testing for one and two samples. Reading from sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Tartışma
12 One-way analysis of variance and writing functions Reading from sources Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Gösterip Yaptırma
13 Linear regression analysis and writing the function Reading from sources Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama
14 Comparison of t-test and Mann-Whitney test in independent groups. Reading from sources Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma, Soru-Cevap
15 General Review Reviewing lecture notes Öğretim Yöntemleri:
Soru-Cevap, Tartışma
16 Term Exams Reading lecture notes and resources. Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Reading lecture notes and resources. Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 8 8
Final Exam 1 16 16
Total Workload (Hour) 122
Total Workload / 25 (h) 4,88
ECTS 5 ECTS

Update Time: 07.05.2025 02:49