UA602 Advanced Remote Sensing Technologies

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF NATURAL AND APPLIED SCIENCES
REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (PhD)
Code UA602
Name Advanced Remote Sensing Technologies
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. NAZIM AKSAKER
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to introduce advanced technologies in remote sensing, and to provide theoretical and practical knowledge on hyperspectral, radar, and LiDAR data processing techniques. The course aims to enhance students' abilities in analyzing and interpreting remote sensing data.

Course Content

Hyperspectral remote sensing, radar remote sensing (Sentinel-1, SAR), LiDAR technology, advanced image processing techniques, object-based classification, data fusion, 3D modeling, big data processing, machine learning applications, artificial intelligence in remote sensing.

Course Precondition

There is no pre requires

Resources

Richards, J. A. (2013). Remote Sensing Digital Image Analysis. Jensen, J. R. (2015). Introductory Digital Image Processing. Schowengerdt, R. A. (2007). Remote Sensing: Models and Methods for Image Processing. Güncel makaleler ve ders notları / Recent articles and lecture notes.

Notes

Richards, J. A. (2013). Remote Sensing Digital Image Analysis. Jensen, J. R. (2015). Introductory Digital Image Processing. Schowengerdt, R. A. (2007). Remote Sensing: Models and Methods for Image Processing. Güncel makaleler ve ders notları / Recent articles and lecture notes.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Identify advanced remote sensing technologies
LO02 Process hyperspectral, radar, and LiDAR data.
LO03 Apply object-based classification and data fusion.
LO04 Use artificial intelligence in remote sensing applications.
LO05 Explain big data processing techniques.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal At the end of the programme, the students acquire advanced knowledge on remote sensing and GIS theory. 3
PLO02 Bilgi - Kuramsal, Olgusal The students gain knowledge on remote sensing technologies, sensors and platforms and remotely sensed data. 2
PLO03 Bilgi - Kuramsal, Olgusal The students generate information using remotely sensed data and GIS together with database management skills. 2
PLO04 Bilgi - Kuramsal, Olgusal The students develop the necessary skills for selecting and using appropriate techniques and tools for engineering practices, using information technologies effectively, and collecting, analysing and interpreting data.
PLO05 Bilgi - Kuramsal, Olgusal The students gain knowledge to use current data and methods for multi-disciplinary research. 2
PLO06 Bilgi - Kuramsal, Olgusal The students gain technical competence and skills in using recent GIS and remote sensing software. 3
PLO07 Bilgi - Kuramsal, Olgusal The students acquire knowledge on potential practical fields of use of remotely sensed data, and use their theoretical and practical knowledge for problem solution in the related professional disciplines.
PLO08 Yetkinlikler - Öğrenme Yetkinliği Students will be able to calculate and interpret physical and atmospheric variables by processing the satellite data.
PLO09 Yetkinlikler - Öğrenme Yetkinliği Students can generate data for GIS projects using Remote Sensing techniques. 3
PLO10 Bilgi - Kuramsal, Olgusal Gains the ability to analyze and interpret geographic data with GIS techniques. 2
PLO11 Bilgi - Kuramsal, Olgusal Gains the ability of problem solving, solving, solution oriented application development.
PLO12 Yetkinlikler - Öğrenme Yetkinliği Acquires the ability to acquire, evaluate, record and apply information from satellite data.


Week Plan

Week Topic Preparation Methods
1 Emerging trends in remote sensing There is no preliminary preparation Öğretim Yöntemleri:
Anlatım, Soru-Cevap
2 Introduction to hyperspectral remote sensing There is no preliminary preparation Öğretim Yöntemleri:
Anlatım, Tartışma
3 Hyperspectral data processing techniques There is no preliminary preparation Öğretim Yöntemleri:
Anlatım, Soru-Cevap
4 Introduction to radar remote sensing There is no preliminary preparation Öğretim Yöntemleri:
Anlatım, Tartışma
5 SAR data processing and interpretation There is no preliminary preparation Öğretim Yöntemleri:
Soru-Cevap, Tartışma, Anlatım
6 Introduction to LiDAR technology There is no preliminary preparation Öğretim Yöntemleri:
Anlatım, Soru-Cevap
7 LiDAR data processing and applications There is no preliminary preparation Öğretim Yöntemleri:
Anlatım, Tartışma
8 Mid-Term Exam There is preliminary preparation Ölçme Yöntemleri:
Yazılı Sınav, Ödev, Proje / Tasarım
9 Object-based image analysis There is no preliminary preparation Öğretim Yöntemleri:
Soru-Cevap, Anlatım
10 Data fusion techniques There are no prerequisites Öğretim Yöntemleri:
Anlatım, Soru-Cevap
11 3D modeling and applications There are no prerequisites Öğretim Yöntemleri:
Tartışma, Anlatım
12 Big data processing approaches There are no prerequisites Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
13 Machine learning in remote sensing There are no prerequisites Öğretim Yöntemleri:
Tartışma, Anlatım
14 AI applications in remote sensing There are no prerequisites Öğretim Yöntemleri:
Anlatım, Tartışma
15 Project presentations and general evaluation There are no prerequisites Öğretim Yöntemleri:
Anlatım, Tartışma
16 Term Exams There are prerequisites Ölçme Yöntemleri:
Proje / Tasarım, Ödev, Yazılı Sınav
17 Term Exams There are prerequisites Ölçme Yöntemleri:
Proje / Tasarım, Ödev, Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 15 3 45
Out of Class Study (Preliminary Work, Practice) 15 4 60
Assesment Related Works
Homeworks, Projects, Others 1 20 20
Mid-term Exams (Written, Oral, etc.) 1 10 10
Final Exam 1 15 15
Total Workload (Hour) 150
Total Workload / 25 (h) 6,00
ECTS 6 ECTS

Update Time: 09.05.2025 11:00