UA607 Big Data in Remote Sensing-I

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF NATURAL AND APPLIED SCIENCES
REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (PhD)
Code UA607
Name Big Data in Remote Sensing-I
Term 2025-2026 Academic Year
Term Fall
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. NAZIM AKSAKER
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to teach fundamental concepts and methods for managing, processing, and analyzing the increasing volume of data in remote sensing. Students will gain skills in basic data processing and analysis within big data environments and learn to use cloud-based platforms effectively.

Course Content

Concept of big data in remote sensing; data sources (Sentinel, MODIS, Landsat, etc.); cloud-based data processing (Google Earth Engine, AWS); basic preprocessing methods; data management; automated workflows; and introduction to multi-temporal data analysis.

Course Precondition

No prerequisites.

Resources

Ghorbanian, A., et al. (2021). Cloud Computing in Remote Sensing: Big Data Applications. Google Earth Engine Developer Guide. Sentinel, Landsat ve MODIS Kullanıcı Kılavuzları / Sentinel, Landsat, and MODIS User Guides.

Notes

Ghorbanian, A., et al. (2021). Cloud Computing in Remote Sensing: Big Data Applications. Google Earth Engine Developer Guide. Sentinel, Landsat ve MODIS Kullanıcı Kılavuzları / Sentinel, Landsat, and MODIS User Guides.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Define the concept of big data in remote sensing.
LO02 Describe big data sources and cloud platforms.
LO03 Perform basic data processing on cloud-based platforms.
LO04 Conduct introductory multi-temporal data analyses.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal At the end of the programme, the students acquire advanced knowledge on remote sensing and GIS theory. 3
PLO02 Bilgi - Kuramsal, Olgusal The students gain knowledge on remote sensing technologies, sensors and platforms and remotely sensed data. 2
PLO03 Bilgi - Kuramsal, Olgusal The students generate information using remotely sensed data and GIS together with database management skills.
PLO04 Bilgi - Kuramsal, Olgusal The students develop the necessary skills for selecting and using appropriate techniques and tools for engineering practices, using information technologies effectively, and collecting, analysing and interpreting data.
PLO05 Bilgi - Kuramsal, Olgusal The students gain knowledge to use current data and methods for multi-disciplinary research. 2
PLO06 Bilgi - Kuramsal, Olgusal The students gain technical competence and skills in using recent GIS and remote sensing software.
PLO07 Bilgi - Kuramsal, Olgusal The students acquire knowledge on potential practical fields of use of remotely sensed data, and use their theoretical and practical knowledge for problem solution in the related professional disciplines. 2
PLO08 Yetkinlikler - Öğrenme Yetkinliği Students will be able to calculate and interpret physical and atmospheric variables by processing the satellite data.
PLO09 Yetkinlikler - Öğrenme Yetkinliği Students can generate data for GIS projects using Remote Sensing techniques. 3
PLO10 Bilgi - Kuramsal, Olgusal Gains the ability to analyze and interpret geographic data with GIS techniques. 2
PLO11 Bilgi - Kuramsal, Olgusal Gains the ability of problem solving, solving, solution oriented application development.
PLO12 Yetkinlikler - Öğrenme Yetkinliği Acquires the ability to acquire, evaluate, record and apply information from satellite data.


Week Plan

Week Topic Preparation Methods
1 Introduction to big data in remote sensing No advance preparation required. Öğretim Yöntemleri:
Anlatım, Soru-Cevap
2 Big data sources (Sentinel, Landsat, MODIS etc.) No advance preparation required. Öğretim Yöntemleri:
Anlatım, Soru-Cevap
3 Cloud computing concepts and platforms (GEE, AWS) No advance preparation required. Öğretim Yöntemleri:
Soru-Cevap, Anlatım
4 Google Earth Engine interface and data access No advance preparation required. Öğretim Yöntemleri:
Anlatım, Soru-Cevap
5 Basic concepts of image preprocessing No advance preparation required. Öğretim Yöntemleri:
Anlatım, Soru-Cevap
6 Data management and dataset organization No advance preparation required. Öğretim Yöntemleri:
Anlatım, Soru-Cevap
7 Raster data processing applications No advance preparation required. Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
8 Mid-Term Exam Advance preparation required. Ölçme Yöntemleri:
Ödev, Proje / Tasarım
9 Vector data processing and spatial analysis No advance preparation required. Öğretim Yöntemleri:
Soru-Cevap, Tartışma
10 Mapping and visualization in Google Earth Engine No advance preparation required. Öğretim Yöntemleri:
Anlatım, Soru-Cevap
11 Creating automated data workflows No advance preparation required. Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
12 Introduction to multi-temporal data analysis No advance preparation required. Öğretim Yöntemleri:
Soru-Cevap, Anlatım, Alıştırma ve Uygulama
13 Practical multi-temporal analysis No advance preparation required. Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
14 Project presentations and discussions No advance preparation required. Öğretim Yöntemleri:
Soru-Cevap, Anlatım
15 General evaluation and closing No advance preparation required. Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
16 Term Exams Advance preparation required Ölçme Yöntemleri:
Yazılı Sınav, Ödev, Proje / Tasarım
17 Term Exams Advance preparation required Ölçme Yöntemleri:
Proje / Tasarım, Sözlü Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 15 3 45
Out of Class Study (Preliminary Work, Practice) 15 4 60
Assesment Related Works
Homeworks, Projects, Others 1 20 20
Mid-term Exams (Written, Oral, etc.) 1 10 10
Final Exam 1 15 15
Total Workload (Hour) 150
Total Workload / 25 (h) 6,00
ECTS 6 ECTS

Update Time: 09.05.2025 12:51