ISB222 Optimization Techniques - II

5 ECTS - 3-0 Duration (T+A)- 4. Semester- 3 National Credit

Information

Code ISB222
Name Optimization Techniques - II
Term 2024-2025 Academic Year
Semester 4. Semester
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Lisans Dersi
Type Normal
Label FE Field Education Courses C Compulsory
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. NİMET ÖZBAY
Course Instructor
1 2
Doç. Dr. NİMET ÖZBAY (A Group) (Ins. in Charge)


Course Goal / Objective

The aim of this course is to comprehend unconstrained and constrained multivariate optimization problems and their solution methods and to gain the ability to solve some nonlinear optimization problems

Course Content

The content of this course consists of the following topics: Unconstrained Univariate Optimization, Unconstrained Bivariate Optimization, Unconstrained Multivariate Optimization, Multivariate Optimization with Equality Constraints, Jacobian Method, Lagrangian Method, Inequality Restricted Optimization, Kuhn-Tucker Conditions, Nonlinear Optimization Techniques

Course Precondition

None

Resources

-Optimizasyon Teknikleri, Hasan Bal, Gazi Üniversitesi, Ankara, 1995. -A First Course in Optimization Theory, Rangarajan K. Sundaram, Cambridge University Press, 1996. -Optimizasyon, Ayşen Apaydın, A.Ü., Ankara, 2005. -Doğrusal Programlama, İmdat Kara, Bilim Teknik Yayınevi, 1991. -Yöneylem Araştırması, Hamdy A. Taha, Literatür Yayıncılık, 2003. -Optimizasyon ve Matlab Uygulamaları, Aysun Tezel Özturan, Nobel Akademik Yayıncılık, 2022.

Notes

-Optimizasyon, Ayşen Apaydın, A.Ü., Ankara, 2005.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Uses unconstrained optimization problems and solution methods
LO02 Uses the solution methods of unconstrained multivariate optimization problems
LO03 Solves equality constrained multivariate optimization problems
LO04 Has the ability to apply Jacobian and Lagrangian methods
LO05 Solves inequality constrained optimization problems
LO06 Writes the Kuhn-Tucker conditions
LO07 Explains some nonlinear optimization methods and their relationships
LO08 Solves some nonlinear optimization problems


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain the essence fundamentals and concepts in the field of Statistics
PLO02 Bilgi - Kuramsal, Olgusal Emphasize the importance of Statistics in life 3
PLO03 Bilgi - Kuramsal, Olgusal Define basic principles and concepts in the field of Law and Economics
PLO04 Bilgi - Kuramsal, Olgusal Produce numeric and statistical solutions in order to overcome the problems
PLO05 Bilgi - Kuramsal, Olgusal Use proper methods and techniques to gather and/or to arrange the data 2
PLO06 Bilgi - Kuramsal, Olgusal Utilize computer programs and builds models, solves problems, does analyses and comments about problems concerning randomization
PLO07 Bilgi - Kuramsal, Olgusal Apply the statistical analyze methods 3
PLO08 Bilgi - Kuramsal, Olgusal Make statistical inference (estimation, hypothesis tests etc.)
PLO09 Bilgi - Kuramsal, Olgusal Generate solutions for the problems in other disciplines by using statistical techniques and gain insight
PLO10 Bilgi - Kuramsal, Olgusal Discover the visual, database and web programming techniques and posses the ability of writing programs
PLO11 Beceriler - Bilişsel, Uygulamalı Distinguish the difference between the statistical methods
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Make oral and visual presentation for the results of statistical methods 3
PLO13 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Have capability on effective and productive work in a group and individually 2
PLO14 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Professional development in accordance with their interests and abilities, as well as the scientific, cultural, artistic and social fields, constantly improve themselves by identifying training needs 2
PLO15 Yetkinlikler - Öğrenme Yetkinliği Develop scientific and ethical values in the fields of statistics-and scientific data collection


Week Plan

Week Topic Preparation Methods
1 Unconstrained Univariate Optimization, Source reading
2 Unconstrained Bivariate Optimization Source reading
3 Unconstrained Multivariate Optimization Source reading
4 Multivariate Optimization with Equality Constraints Source reading
5 Jacobian Method Source reading
6 Lagrangian Method Source reading
7 Equality Constrained Multivariate Optimization Problems Source reading
8 Mid-Term Exam Review the topics discussed in the lecture notes and sources
9 Sensitivity Analysis in Equality Constrained Multivariate Optimization Source reading
10 Elimination methods Source reading
11 Exhaustive Search, Dichotomous Search Source reading
12 Fibonacci Search Source reading
13 Golden Ratio Search Source reading
14 Gradient Descent Source reading
15 Problem Solving Source reading
16 Term Exams Review the topics discussed in the lecture notes and sources
17 Term Exams Review the topics discussed in the lecture notes and sources


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 18 18
Total Workload (Hour) 114
Total Workload / 25 (h) 4,56
ECTS 5 ECTS

Update Time: 14.01.2025 10:31