Information
Code | ISB461 |
Name | Simulation and Modelling |
Term | 2024-2025 Academic Year |
Semester | 7. Semester |
Duration (T+A) | 3-0 (T-A) (17 Week) |
ECTS | 5 ECTS |
National Credit | 3 National Credit |
Teaching Language | Türkçe |
Level | Lisans Dersi |
Type | Normal |
Mode of study | Yüz Yüze Öğretim |
Catalog Information Coordinator | Prof. Dr. HÜSEYİN GÜLER |
Course Instructor |
Prof. Dr. HÜSEYİN GÜLER
(A Group)
(Ins. in Charge)
|
Course Goal / Objective
The aim of this course is to provide students with the knowledge of modelling analytically difficult problems encountered in Statistics. In addition to this, it is also aimed to bring the knowledge of obtaining an empirical solution of the problem with a simulation by creating a virtual experiment
Course Content
The definition and objective of simulation, techniques for simulation, mathematical modelling, programming in MATLAB, Monte Carlo estimation of a parameter of interest.
Course Precondition
None
Resources
İstatistiksel Simülasyon Ders Notları, Hüseyin Güler, Adana, 2015.
Notes
Benzetim, Beşinci Basımdan Çeviri, Sheldon Ross, Çevirenler: Mustafa Yavuz Ata, M. Akif Bakır, Osman Ufuk Ekiz, Nobel Kitabevi, 2015. Matematiksel Modelleme ve Simülasyon, Fikri Öztürk, Levent Özbek, Gazi Kitabevi, 2004.
Course Learning Outcomes
Order | Course Learning Outcomes |
---|---|
LO01 | Students will be able to determine the difference between classical sampling approaches and simulation. |
LO02 | Students will be able to generate random numbers from the uniform distribution within range (0,1) with random number generators. |
LO03 | Students will be able to determine how they can generate random numbers from a distribution with probability integral transformation. |
LO04 | Students will be able to model a real life phenomena with random variables. |
LO05 | Students will be able to determine how they can estimate the model parameters with simulation. |
LO06 | Students will be able to estimate the parameters of a large scale problem with simulations by using MATLAB. |
Relation with Program Learning Outcome
Order | Type | Program Learning Outcomes | Level |
---|---|---|---|
PLO01 | Bilgi - Kuramsal, Olgusal | Explain the essence fundamentals and concepts in the field of Statistics | |
PLO02 | Bilgi - Kuramsal, Olgusal | Emphasize the importance of Statistics in life | |
PLO03 | Bilgi - Kuramsal, Olgusal | Define basic principles and concepts in the field of Law and Economics | |
PLO04 | Bilgi - Kuramsal, Olgusal | Produce numeric and statistical solutions in order to overcome the problems | |
PLO05 | Bilgi - Kuramsal, Olgusal | Use proper methods and techniques to gather and/or to arrange the data | |
PLO06 | Bilgi - Kuramsal, Olgusal | Utilize computer programs and builds models, solves problems, does analyses and comments about problems concerning randomization | |
PLO07 | Bilgi - Kuramsal, Olgusal | Apply the statistical analyze methods | |
PLO08 | Bilgi - Kuramsal, Olgusal | Make statistical inference (estimation, hypothesis tests etc.) | |
PLO09 | Bilgi - Kuramsal, Olgusal | Generate solutions for the problems in other disciplines by using statistical techniques and gain insight | |
PLO10 | Bilgi - Kuramsal, Olgusal | Discover the visual, database and web programming techniques and posses the ability of writing programs | |
PLO11 | Beceriler - Bilişsel, Uygulamalı | Distinguish the difference between the statistical methods | |
PLO12 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Make oral and visual presentation for the results of statistical methods | |
PLO13 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Have capability on effective and productive work in a group and individually | 2 |
PLO14 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Professional development in accordance with their interests and abilities, as well as the scientific, cultural, artistic and social fields, constantly improve themselves by identifying training needs | |
PLO15 | Yetkinlikler - Öğrenme Yetkinliği | Develop scientific and ethical values in the fields of statistics-and scientific data collection |
Week Plan
Week | Topic | Preparation | Methods |
---|---|---|---|
1 | Definitions and a review of probability and random variables | Lecture notes: Chapter 1 | Öğretim Yöntemleri: Anlatım |
2 | Random number generators | Lecture notes: Chapter 2, Reference book: p.123-140 and p.147-157 | Öğretim Yöntemleri: Anlatım, Alıştırma ve Uygulama |
3 | Simulating from some distributions - 1 | Lecture notes: Chapters 3.1 to 3.3, Reference book: Chapters 3.1, 3.5 and 3.6 | Öğretim Yöntemleri: Anlatım, Alıştırma ve Uygulama |
4 | Simulating from some distributions - 2 | Lecture notes: Chapters 3.1 to 3.3, Reference book: Chapters 3.1, 3.5 and 3.6 | Öğretim Yöntemleri: Anlatım, Alıştırma ve Uygulama |
5 | Algorithms and MATLAB | Lecture notes: Chapter 4 | Öğretim Yöntemleri: Anlatım, Alıştırma ve Uygulama |
6 | Generating random numbers and simulating some distributions with MATLAB | Lecture notes: Chapter 4 | Öğretim Yöntemleri: Anlatım, Alıştırma ve Uygulama |
7 | Monte Carlo experiment and simulation, estimation of a parameter with simulation | Lecture notes: Chapters 5.1 to 5.3, Reference book: p.246-250 | Öğretim Yöntemleri: Anlatım, Tartışma, Alıştırma ve Uygulama, Problem Çözme |
8 | Mid-Term Exam | A review of topics about the midterm exam | Ölçme Yöntemleri: Yazılı Sınav |
9 | Estimation of a parameter with simulation - 1 | Lecture notes: Chapter 5 | Öğretim Yöntemleri: Anlatım, Tartışma, Alıştırma ve Uygulama |
10 | Estimation of a parameter with simulation - 2 | Lecture notes: Chapter 5 | Öğretim Yöntemleri: Anlatım, Tartışma, Alıştırma ve Uygulama |
11 | Applications of simulation 1: Estimation of a parameter, estimation of a probability | Reference book: p.250-261 | Öğretim Yöntemleri: Anlatım, Tartışma, Grup Çalışması, Proje Temelli Öğrenme |
12 | Applications of simulation 2: Estimation of a probability, hypothesis testing | Reference book: p.250-261 | Öğretim Yöntemleri: Anlatım, Tartışma, Grup Çalışması, Proje Temelli Öğrenme |
13 | Applications of simulation 3: Hypothesis testing, simulating a regression equation | Lecture notes: Chapter 5 | Öğretim Yöntemleri: Anlatım, Tartışma, Grup Çalışması, Proje Temelli Öğrenme |
14 | Applications of simulation 4: Simulating a regression equation, Monte Carlo Integral | Lecture notes: Chapter 5 | Öğretim Yöntemleri: Anlatım, Tartışma, Grup Çalışması, Proje Temelli Öğrenme |
15 | Applications of simulation 5: Monte Carlo Integral | Lecture notes: Chapter 5 | Öğretim Yöntemleri: Anlatım, Tartışma, Grup Çalışması, Proje Temelli Öğrenme |
16 | Term Exams | A review of topics about the final exam | Ölçme Yöntemleri: Yazılı Sınav |
17 | Term Exams | A review of topics about the final exam | Ölçme Yöntemleri: Yazılı Sınav |
Student Workload - ECTS
Works | Number | Time (Hour) | Workload (Hour) |
---|---|---|---|
Course Related Works | |||
Class Time (Exam weeks are excluded) | 14 | 3 | 42 |
Out of Class Study (Preliminary Work, Practice) | 14 | 3 | 42 |
Assesment Related Works | |||
Homeworks, Projects, Others | 0 | 0 | 0 |
Mid-term Exams (Written, Oral, etc.) | 1 | 12 | 12 |
Final Exam | 1 | 18 | 18 |
Total Workload (Hour) | 114 | ||
Total Workload / 25 (h) | 4,56 | ||
ECTS | 5 ECTS |