BMM0055 Cardiovascular Fluid Mechanics

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Code BMM0055
Name Cardiovascular Fluid Mechanics
Term 2024-2025 Academic Year
Term Fall
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Doktora Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator
Course Instructor
1


Course Goal / Objective

To learn the flow structure in the cardiovascular system and the interactions of structural elements and fluid motion.

Course Content

Fundamentals of fluid mechanics, blood rheology, cardiovascular system and its components, related equations and solutions

Course Precondition

None

Resources

Lecture Notes

Notes

Gianni Pedrizzetti, Karl Perktold, Cardiovascular Fluid Mechanics, Springer, 2003.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 The student will learn about the cardiovascular system.
LO02 The student will learn the effects of the disorders that may occur in the cardiovascular system on the flow structure.
LO03 The student will reinforce their gains about biofluid mechanics.
LO04 The student will understand fluid-structure interactions.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal To be able to reach new solutions by applying current and advanced technical approaches of mathematics, science and engineering sciences to current scientific problems encountered in the field of medicine and medical technologies. 4
PLO02 Yetkinlikler - Öğrenme Yetkinliği Having knowledge of the literature related to a sub-discipline of biomedical engineering, defining and modeling current problems, and being a specialist in that discipline. 5
PLO03 Beceriler - Bilişsel, Uygulamalı Analyzing data, making theoretical and simulation based designs, designing experiments and interpreting the results. 4
PLO04 Beceriler - Bilişsel, Uygulamalı Developing researched contemporary techniques, software, hardware and computational tools for engineering applications. 3
PLO05 Beceriler - Bilişsel, Uygulamalı To be able to analyze and design a process in line with a defined target. 2
PLO06 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği To be able to carry out scientific studies with medical doctors and members of other disciplines from an engineering point of view. 5
PLO07 Yetkinlikler - İletişim ve Sosyal Yetkinlik Expressing one's own findings orally and in writing, clearly and concisely, writing conference and journal papers.
PLO08 Yetkinlikler - Öğrenme Yetkinliği To be able to improve oneself by embracing the importance of lifelong learning and by following the developments in science-technology and contemporary issues.
PLO09 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği The ability to act independently, set priorities and be creative.
PLO10 Yetkinlikler - Alana Özgü Yetkinlik Being aware of national and international contemporary scientific and social problems in the field of Biomedical Engineering. 5
PLO11 Yetkinlikler - Alana Özgü Yetkinlik To be able to evaluate the contribution of engineering solutions to problems in medicine, medical technologies and health in a global and social context.


Week Plan

Week Topic Preparation Methods
1 Introduction to Fluid Mechanics Reading lecture materials
2 Fluid Mechanics Fundamentals Reading lecture materials
3 Cardiovascular System Reading lecture materials
4 Cardiovascular system function-1 Reading lecture materials
5 Cardiovascular system function-2 Reading lecture materials
6 Introduction to Blood Rheology Reading lecture materials
7 Blood Rheology Reading lecture materials
8 Mid-Term Exam Reading lecture materials
9 Heart Valve Mechanics-1 Reading lecture materials
10 Heart Valve Mechanics-2 Reading lecture materials
11 Heart Valve Fluid Mechanics-1 Reading lecture materials
12 Heart Valve Fluid Mechanics-2 Reading lecture materials
13 Biofluid Mathematical Models-1 Reading lecture materials
14 Biofluid Mathematical Models-2 Reading lecture materials
15 Biofluid Mathematical Models-3 Reading lecture materials
16 Term Exams Reading lecture materials
17 Term Exams Reading lecture materials


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 5 70
Assesment Related Works
Homeworks, Projects, Others 1 4 4
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 22 22
Total Workload (Hour) 150
Total Workload / 25 (h) 6,00
ECTS 6 ECTS

Update Time: 05.12.2024 11:25