UA524 Basic Principles of Remote Sensing

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF NATURAL AND APPLIED SCIENCES
REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (MASTER) (WITH THESIS)
Code UA524
Name Basic Principles of Remote Sensing
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. NAZIM AKSAKER
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

This course aims to teach the basic concepts of remote sensing, the role of the electromagnetic spectrum, sensors and platforms, data acquisition, and preprocessing. It aims to provide students with the ability to interpret satellite and aerial images and perform basic analyses.

Course Content

Definition and history of remote sensing, electromagnetic spectrum, atmospheric effects, types of sensors and platforms, image acquisition, fundamentals of digital image processing, basic image analysis methods, classification, and accuracy assessment.

Course Precondition

There is no pre requires

Resources

Jensen, J. R. (2015). Introductory Digital Image Processing. Lillesand, T., Kiefer, R. W., Chipman, J. (2015). Remote Sensing and Image Interpretation. Campbell, J. B., Wynne, R. H. (2011). Introduction to Remote Sensing. Güncel makaleler ve ders notları / Recent articles and lecture notes.

Notes

Jensen, J. R. (2015). Introductory Digital Image Processing. Lillesand, T., Kiefer, R. W., Chipman, J. (2015). Remote Sensing and Image Interpretation. Campbell, J. B., Wynne, R. H. (2011). Introduction to Remote Sensing. Güncel makaleler ve ders notları / Recent articles and lecture notes.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explain basic concepts of remote sensing
LO02 Identify the role of the electromagnetic spectrum in remote sensing.
LO03 Distinguish types of sensors and platforms.
LO04 Apply basic image processing and analysis techniques.
LO05 Perform classification and accuracy assessment.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal At the end of the programme, the students acquire advanced knowledge on remote sensing and GIS theory
PLO02 Bilgi - Kuramsal, Olgusal The students gain knowledge on remote sensing technologies, sensors and platforms and remotely sensed data 2
PLO03 Bilgi - Kuramsal, Olgusal The students generate information using remotely sensed data and GIS together with database management skills. 3
PLO04 Bilgi - Kuramsal, Olgusal The students develop the necessary skills for selecting and using appropriate techniques and tools for engineering practices, using information technologies effectively, and collecting, analysing and interpreting data. 2
PLO05 Bilgi - Kuramsal, Olgusal The students gain knowledge to use current data and methods for multi-disciplinary research
PLO06 Bilgi - Kuramsal, Olgusal The students gain technical competence and skills in using recent GIS and remote sensing software 2
PLO07 Bilgi - Kuramsal, Olgusal The students acquire knowledge on potential practical fields of use of remotely sensed data, and use their theoretical and practical knowledge for problem solution in the related professional disciplines. 3
PLO08 Yetkinlikler - Öğrenme Yetkinliği Students will be able to calculate and interpret physical and atmospheric variables by processing the satellite data.
PLO09 Yetkinlikler - Öğrenme Yetkinliği Students can generate data for GIS projects using Remote Sensing techniques. 2
PLO10 Bilgi - Kuramsal, Olgusal Gains the ability to analyze and interpret geographic data with GIS techniques 2
PLO11 Bilgi - Kuramsal, Olgusal Gains the ability of problem solving, solving, solution oriented application development
PLO12 Yetkinlikler - Öğrenme Yetkinliği Acquires the ability to acquire, evaluate, record and apply information from satellite data


Week Plan

Week Topic Preparation Methods
1 Introduction to remote sensing There are no prerequisites Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
2 History and applications of remote sensing There are no prerequisites Öğretim Yöntemleri:
Anlatım, Soru-Cevap
3 Electromagnetic spectrum There are no prerequisites Öğretim Yöntemleri:
Anlatım, Tartışma
4 Atmospheric effects on EM waves There are no prerequisites Öğretim Yöntemleri:
Soru-Cevap, Tartışma
5 Sensor types and characteristics There are no prerequisites Öğretim Yöntemleri:
Soru-Cevap, Tartışma
6 Platforms (satellite, aerial) There are no prerequisites Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
7 Image acquisition and data sources There are no prerequisites Öğretim Yöntemleri:
Soru-Cevap, Tartışma
8 Mid-Term Exam There are prerequisites Öğretim Yöntemleri:
Anlatım
9 Basics of digital image processing There are no prerequisites Öğretim Yöntemleri:
Tartışma, Anlatım
10 Image enhancement techniques There are no prerequisites Öğretim Yöntemleri:
Anlatım, Tartışma
11 Basic image analysis methods There are no prerequisites Öğretim Yöntemleri:
Soru-Cevap, Alıştırma ve Uygulama
12 Image classification methods There are no prerequisites Öğretim Yöntemleri:
Alıştırma ve Uygulama, Anlatım
13 Accuracy assessment There are no prerequisites Öğretim Yöntemleri:
Alıştırma ve Uygulama, Anlatım
14 Practical examples and case studies There are no prerequisites Öğretim Yöntemleri:
Tartışma, Anlatım
15 Project presentations and evaluation There are no prerequisites Öğretim Yöntemleri:
Tartışma, Anlatım
16 Term Exams There are prerequisites Ölçme Yöntemleri:
Proje / Tasarım, Yazılı Sınav, Ödev
17 Term Exams There are prerequisites Ölçme Yöntemleri:
Yazılı Sınav, Ödev, Proje / Tasarım


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 15 3 45
Out of Class Study (Preliminary Work, Practice) 15 4 60
Assesment Related Works
Homeworks, Projects, Others 1 20 20
Mid-term Exams (Written, Oral, etc.) 1 10 10
Final Exam 1 15 15
Total Workload (Hour) 150
Total Workload / 25 (h) 6,00
ECTS 6 ECTS

Update Time: 09.05.2025 11:19