SD0762 Fundamentals of Machine Learning and Deep Learning

3 ECTS - 2-0 Duration (T+A)- 0. Semester- 2 National Credit

Information

Unit
Code SD0762
Name Fundamentals of Machine Learning and Deep Learning
Term 2025-2026 Academic Year
Term Fall and Spring
Duration (T+A) 2-0 (T-A) (17 Week)
ECTS 3 ECTS
National Credit 2 National Credit
Teaching Language Türkçe
Level Üniversite Dersi
Label UCC University Common Course
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Öğr. Gör. Eşref ERDOĞAN
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

This course aims to teach the basic principles of machine learning and deep learning. It provides students with basic knowledge about working with data, understanding model logic, and current application areas.

Course Content

This course aims to introduce the concepts of machine learning and deep learning at a basic level. It explains what supervised, unsupervised, and reinforcement learning are and focuses on the roles of these techniques in the world of machine learning. The definition of deep learning and how it differs from machine learning is explained in an understandable language within the scope of the basic structure and functioning of artificial neural networks. These concepts are concretized with application examples such as image recognition, text processing or recommendation systems used in daily life.

Course Precondition

Resources

•Géron, A. Applied Machine Learning with Scikit-Learn, Keras and TensorFlow (Fundamentals)

Notes

Dataset resources available on the web


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Defines the concept and types of machine learning.
LO02 Explain the differences between supervised, unsupervised and reinforcement learning.
LO03 Explains the concept of deep learning and its difference from machine learning.
LO04 Understands the basic logic of artificial neural networks.
LO05 It performs simple classification and prediction applications with ready-made tools.
LO06 Recognizes model evaluation criteria.


Week Plan

Week Topic Preparation Methods
1 Introduction to Machine Learning No preparation required Öğretim Yöntemleri:
Anlatım, Gösteri, Tartışma
2 Types of Machine Learning No preparation required Öğretim Yöntemleri:
Anlatım, Tartışma, Gösteri, Örnek Olay
3 Data Concept No preparation required Öğretim Yöntemleri:
Anlatım, Gösteri, Tartışma
4 Data Preprocessing No preparation required Öğretim Yöntemleri:
Anlatım, Tartışma, Gösteri, Örnek Olay
5 Supervised Learning Methods No preparation required Öğretim Yöntemleri:
Anlatım, Tartışma, Gösteri, Beyin Fırtınası
6 Unsupervised Learning No preparation required Öğretim Yöntemleri:
Anlatım, Tartışma, Gösteri, Örnek Olay
7 Introduction to Deep Learning No preparation required Öğretim Yöntemleri:
Anlatım, Örnek Olay, Gösteri
8 Mid-Term Exam Preliminary Preparation Required Ölçme Yöntemleri:
Yazılı Sınav
9 Fundamentals of Artificial Neural Networks No preparation required Öğretim Yöntemleri:
Anlatım, Tartışma, Gösteri
10 Convolutional Neural Networks (CNN) No preparation required Öğretim Yöntemleri:
Soru-Cevap, Gösteri, Örnek Olay
11 Recurrent Neural Networks (RNN, LSTM) No preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Gösteri, Örnek Olay
12 Transfer Learning No preparation required Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösteri, Örnek Olay
13 Model Performance Measurement No preparation required Öğretim Yöntemleri:
Anlatım, Gösteri, Beyin Fırtınası, Örnek Olay
14 Application Examples No preparation required Öğretim Yöntemleri:
Soru-Cevap, Gösteri, Örnek Olay
15 General Evaluation No preparation required Öğretim Yöntemleri:
Anlatım, Tartışma, Beyin Fırtınası
16 Term Exams Preliminary Preparation Required Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Preliminary Preparation Required Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 2 28
Out of Class Study (Preliminary Work, Practice) 14 2 28
Assesment Related Works
Homeworks, Projects, Others 1 10 10
Mid-term Exams (Written, Oral, etc.) 1 1 1
Final Exam 1 1 1
Total Workload (Hour) 68
Total Workload / 25 (h) 2,72
ECTS 3 ECTS

Update Time: 07.01.2026 12:32